Chen J, Ji S, Ceran B, et al. Learning subspace kernels for classification[C]. ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York, 2008: 106-114.
[2]
Cristianini N, Shawe-Taylor J, Elisseeff A, et al. On kerneltarget alignment[C]. Proc of NIPS. Cambridge: MIT Press, 2002: 367-373.
[3]
Qamar A-M, Gaussier E, Chevallet J-P, et al. Similarity learning for nearest neighbor classification[C]. Proc of IEEE ICDM. Pisa, 2008: 983-988.
[4]
Herlocker J L, Konstan J A, Terveen L G, et al. Evaluating collaborative filtering recommender systems[J]. ACM Trans on Information Systems, 2004, 22(1): 5-53.
[5]
Wang J, Vries A P D, Reinders M J T. Unifying userbased and item-based collaborative filtering approaches by similarity fusion[C]. Proc of SIGIR. New York: ACM Press, 2006: 501-508.
[6]
Paterek A. Improving regularized singular value decomposition for collaborative filtering[C]. Proc of KDD Cup and Workshop. San Jose, 2007: 39-42.
[7]
Koren Y. Factorization meets the neighborhood: A multifaceted collaborative filtering model[C]. ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York, 2008: 426-434.
[8]
Deshpande M, Karypis G. Item-based top-n recommendation algorithms[J]. ACM Trans on Information Systems, 2004, 22(1): 143-177.
[9]
Wu K L, Yu J, Yang M S. A novel fuzzy clustering algorithm based on a fuzzy scatter matrix with optimality tests[J]. Pattern Recognition Letters, 2005, 26(5): 639-652.
[10]
Yu J, Cheng Q S, Huang H K. Analysis of the weighting exponent in the FCM[J]. IEEE Trans on Systems, Man, and Cybernetics—Part B: Cybernetics, 2004, 34(1): 164-176.
[11]
Yang S, Yan S, Zhang C, et al. Bilinear analysis for kernel selection and nonlinear feature extraction[J]. IEEE Trans on Neural Networks, 2007, 18(5): 1442-1452.
[12]
Deng Z H, Choi K S, Chung F L, et al. Enhanced soft subspace clustering integrating within-cluster and betweencluster information[J]. Pattern Recognition, 2010, 43(3): 767-781.
(Jiang Y Z, Deng Z H, Wang S T. Mamdani-Larsen type transfer learning fuzzy system[J]. Acta Automatica Sinica, 2012, 38(9): 1393-1409.)
[15]
Badoiu M, Clarkson K L. Optimal core sets for balls computational geometry[J]. Theory and Applications, 2008, 40(1): 14-22.
[16]
Platt J. Fast training of support vector machines using sequential minimal optimization[C]. Advances in Kernel Methods-Support Vector Learning. Cambridge: MIT Press, 2000: 185-208.
[17]
Jarvelin, Kekalainen J. Ir evaluation methods for retrieving highly relevant documents[C]. Proc of SIGIR. New York, 2000: 41-48.
[18]
Weimer M, Karatzoglou A, Le Q V, et al. Cofirankmaximum margin matrix factorization for collaborative ranking[C]. Proc of NIPS. Cambridge: MIT Press, 2007: 1593-1600.
[19]
Tang J H, Qi G J, Zhang L Y, et al. Cross-space affinity learning with its application to movie recommendation[J]. IEEE Trans on Knowledge and Data Engineering, 2011, 25(7): 1510-1519.
[20]
Tsang I, Kwok J, Zurada J. Generalized core vector machines[J]. IEEE Trans on Neural Networks, 2006, 17(5): 1126-1139.
[21]
Tsang I, Kwok J, Cheung P. Core vector machines: Fast SVM training on very large data sets[J]. J of Machine Learning Research, 2005, 6: 363-392.
[22]
Deng Z H, Chung F L, Wang S T. FRSDE:Fast reduced set density estimator using minimal enclosing ball approximation[J]. Pattern Recognition ,2008, 41(4): 1363-1372.
(Qian P J, Wang S T, Deng Z H. Fast spectral clustering for large data sets using minimal enclosing ball[J]. Acta Electronica Sinica, 2010, 38(9): 2035-2041.)
(Hu W J, Wang S T, Wang J, et al. Fast learning of generalized minimum enclosing ball for large datasets[J]. Acta Automatica Sinica, 2012, 38(11): 1831-1840.)
[27]
Mitchell T. Machine learning, chapter computational learning theory[M]. McGraw-Hill,1997.
[28]
Domeniconi C, Gunopulos D, Ma S, et al. Locally adaptive metrics for clustering high dimensional data[J]. Data Mining and Knowledge Discovery J, 2007, 14(1): 63-97.