全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

具有损失规避零售商的模糊供应链网络均衡

DOI: 10.13195/j.kzyjc.2013.0912, PP. 1899-1906

Keywords: 供应链网络,损失规避,变分不等式,模糊需求

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对模糊市场需求情形,研究具有损失规避行为零售商的无缺货成本的供应链网络均衡问题.利用模糊事件的可信性测度理论,推导具有分段线性效用函数损失规避零售商的模糊期望效用模型,揭示其凹性性质.利用变分不等式理论,描述制造商、零售商和消费者的最优行为,进而构建网络均衡模型.为了简化网络均衡条件,揭示了制造商与零售商内生交易定价机制的等价关系.最后,利用数值分析表明了市场需求的模糊性和损失规避系数对网络均衡的影响.

References

[1]  Nagurney A, Dong J, Zhang D. A supply chain network equilibrium model[J]. Transportation Research: Part E, 2002, 38(5): 281-303.
[2]  Dong J, Zhang D, Nagurney A. A supply chain network equilibrium model with random demand[J]. European J of Operational Research, 2004, 156(1): 194-212.
[3]  杨跃翔, 夏国平, 卫昆. 双渠道两阶段供应链网络均衡模型[J]. 计算机集成制造系统, 2006, 12(9): 1391-1395.
[4]  (Yang Y X, Xia G P, Wei K. Two- phase supply chain network equilibrium model[J]. Computer Integrated Manufacturing Systems, 2006, 12(9): 1391-1395.)
[5]  滕春贤, 姚锋敏, 胡宪武. 具有随机需求的多商品流供应链网络均衡模型研究[J]. 系统工程理论与实践, 2007, 27(10): 77-83.
[6]  (Teng C X, Yao M F, Hu X W. Study on multi-commodity flow supply chain network equilibrium model with random demand[J]. Systems Engineering-Theory & Practice, 2007, 27(10): 77-83.)
[7]  胡劲松, 徐元吉. 考虑产能约束的模糊供应链网络均衡研究[J]. 管理学报, 2012, 9(1): 139-143.
[8]  (Hu J S, Xu Y J. A supply chain network equilibrium model with fuzzy demand in consideration of capacity constraints[J]. Chinese J of Management, 2012, 9(1): 139-143.)
[9]  胡劲松, 徐元吉, 刘芳霞, 等. 具有模糊需求的多商品流供应链网络均衡研究[J]. 控制与决策, 2012, 27(5): 665-672.
[10]  (Hu J S, Xu Y J, Liu F X, et al. Multi-products flow supply chain network equilibrium with fuzzy demand[J]. Control and Decision, 2012, 27(5): 665-672.)
[11]  Nagurney A, Matsypura D. Global supply chain network dynamics with multicriteria decision-making under risk and uncertainty[J]. Transportation Research Part E: Logistics and Transportation Review, 2005, 41(6): 585-612.
[12]  Zhang L P, Zhou Y. A new approach to supply chain network equilibrium models[J]. Computers & Industrial Engineering, 2012, 63(1): 82-88.
[13]  Kahneman D, Tversky A. Prospect theory: An analysis of decisions under risk[J]. Econometrica, 1979, 47(2): 263-291.
[14]  Schweitzer M E, Cachon G P. Decision bias in the newsvendor problem with a known demand distribution: Experimental evidence[J]. Management Science, 2000, 46(3): 404-420.
[15]  Wang C X, Webster S. The loss-averse newsvendor problem[J]. Omega, 2009, 37(1): 93-105.
[16]  Shen H C, Pang Z, Cheng T C E. The component procurement problem for the loss-averse manufacturer with spot purchase[J]. Int J of Production Economics, 2011, 132(1): 146-153.
[17]  Zhang L , Song S J, Wu C. Supply chain coordination of loss-averse newsvendor with contract[J]. Tsinghua Science and Technology, 2005, 10(2): 133-140.
[18]  Shi K, Xiao T J. Coordination of a supply chain with a loss-averse retailer under two types of contract[J]. Int J of Information and Decision Sciences, 2008, 1(1): 5-25.
[19]  刚号, 唐小我, 慕银平. 延迟支付下损失厌恶型零售商参与的供应链运作及协调[J]. 控制与决策, 2013, 28(7): 1023-1032.
[20]  (Gang H, Tang X W, Mu Y P. Robust model predictive control with input-to-state stability[J]. Control and Decision, 2013, 28(7): 1023-1032.)
[21]  Wang C X. The loss-averse newsvendor game[J]. Int J of Production Economics, 2010, 124: 448-452.
[22]  李绩才, 周永务, 肖旦, 等. 考虑损失厌恶一对多型供应链的收益共享契约[J]. 管理科学学报, 2013, 16(2): 71-81.
[23]  (Li J C, Zhou YW, Xiao D, et al. Revenue-sharing contract in supply chains with single supplier and multiple loss-averse retailers[J]. J of Management Sciences in China, 2013, 16(2): 71-81.)
[24]  Korpelevich G. The extragradient method for finding saddle points and other problems[J]. Matekon, 1977, 13(1): 35-49.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133