全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

决策单元特殊关系的挖掘与建立

DOI: 10.13195/j.kzyjc.2013.1485, PP. 335-342

Keywords: 数据包络分析方法,样本决策单元,距离,格论,Matlab

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于偏序集理论的数据包络分析方法,通过引进适当的偏序关系,挖掘出决策单元之间的特殊关系.然而,随着决策单元所选取的投入产出指标个数的增加,决策单元之间的偏序关系变得越来越少.对此,通过引进决策单元之间的距离和适当的样本决策单元,建立决策单元之间的特殊关系,最终生成决策单元之间的格论关系,并引进相关定理及其算法.最后通过仿真结果表明了所提出算法的有效性和实用性.

References

[1]  (Ma Z X. Data envelopment analysis models and methods[M]. Beijing: Science Press, 2010: 7-10.)
[2]  马占新, 唐焕文, 戴印山. 偏序集理论在数据包络分析中的应用研究[J]. 系统工程, 2002, 17(1): 19-25.
[3]  (Ma Z X, Tang H W, Dai Y S. Using theory of partially ordered sets to study data envelopment analysis[J]. J of Systems Engineering, 2002, 17(1): 19-25.)
[4]  木仁, 马占新, 崔巍. 基于偏序集理论的数据包络分析方法[J]. 系统工程与电子技术, 2013, 35(2): 350-356.
[5]  (Mu Ren, Ma Z X, CuiW. Fuzzy data envelopment analysis approach based on sample decision making units[J]. J of Systems Engineering and Electronics, 2013, 35(2): 350-356.)
[6]  Walter, Liang Q B. On some semilattice structures for production technologies[J]. European J of Operational Research, 2011, 215(3): 740-749.
[7]  王宁沈, 易荣华, 王伟. 决策单元投影研究[J]. 数学的实践与认识, 2009, 39(4): 113-122.
[8]  Charnes, Cooper W W, Rhoes E. Measuring the efficiency of decision making units[J]. European J of Operational Research, 1978, 2(6): 429-444.
[9]  Banker R D, Charnes A, Cooper W W. Some models for estimating technical and scale inefficiencies in data envelopment analysis[J]. Management Sciences, 1984, 30(9): 1078-1092.
[10]  F¨are R S, Grosskopf S. A nonparametric cost approach to scale efficiency[J]. Scandinavian J of Economics, 1985, 87(4): 594-604.
[11]  Seiford L M, Thrall R M. Recent development in DEA: The mathematical programming approach to frontier analysis[J]. J of Economics, 1990, 46 (1/2): 7-38.
[12]  Sengupta J K. Data envelopment analysis for efficiency measurement in the stochastic case[J]. Computers and Operations Research, 1987, 14(2): 117-129.
[13]  Yang Y S. Data envelopment analysis(DEA) model with interval gray numbers[J]. Information and Management Sciences, 1998, 9(4): 11-23.
[14]  Wang Y M, Chin K S. Fuzzy data envelopment analysis: A fuzzy expected value approach[J]. Expert Systems with Application, 2011, 38(9): 11678-11685.
[15]  Wang Y M, Greatbanks R, Yang J B. Interval efficiency assessment using data envelopment analysis[J]. Fuzzy Sets and Systems, 2005, 153(3): 347-370.
[16]  魏权龄. 评价相对有效性的数据包络分析模型——DEA和网络DEA[M]. 北京: 中国人民大学出版社, 2012: 1-11.
[17]  (Wei Q L. Relative efficiency evaluation method of Data envelopment analysis model?— DEA and network DEA[M]. Beijing: Renmin University of China, 2012: 1-11.)
[18]  魏权龄. 数据包络分析[M]. 北京: 科学出版社, 2004: 170-183.
[19]  (Wei Q L. Data envelopment analysis[M]. Beijing: Science Press, 2006: 170-183.)
[20]  Wang Y M, Chin K S. Some alternative models for DEA cross-efficiency evaluation[J]. Int J of Production Economics, 2010, 128(1): 332-338.
[21]  Liang L,Wu J, Cook D C, et al. Alternative secondary goals in DEA cross-efficiency evaluation[J]. Int J of Production Economics, 2008, 113(2): 1025-1030.
[22]  马占新. 广义数据包络分析方法[M]. 北京: 科学出版社, 2012:1-12.
[23]  (Ma Z X. Generalized data envelopment analysis method[M]. Beijing: Science Press, 2012: 1-12.)
[24]  马占新. 数据包络分析模型与方法[M]. 北京:科学出版社, 2010: 7-10.
[25]  (Wang N S, Yi R H, Wang W. The research on the problem of projections for DMUs[J]. Mathematics Practice and Theory, 2009, 39(4): 113-122.)
[26]  Gr¨atzer G. General lattice theory[M]. New York: Academic Press, 1978: 21-30.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133