Lee T S, Mumford D. Hierarchical Bayesian inference in the visual cortex[J]. Optical Society of America, 2003, 20(7): 1434-1448.
[2]
Rossi A F, Desimone R, Ungerleider L G. Contextual modulation in primary visual cortex of macaques[J]. J of Neuroscience, 2001, 21(5): 1689-1709.
[3]
Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
[4]
Dahl G E, Yu D, Deng L, et al. Large vocabulary continuous speech recognition with context-dependent DBN-HMMS[C]. Proc of IEEE Int Conf on Acoustics, Speech and Signal Processing. Prague, 2011: 4688-4691.
[5]
Deselaers T, Hasan S, Bender O, et al. A deep learning approach to machine transliteration[C]. Proc of the 4th Workshop on Statistical Machine Translation. Athens, 2009: 233-241.
[6]
Fasel I, Berry J. Deep belief networks for real-time extraction of tongue contours from ultrasound during speech[C]. Proc of the 20th Int Conf on Pattern Recognition. Stroudsburg: Association for Computational Linguistics, 2010: 1493-1496.
[7]
Deng L, Seltzer M L, Yu D, et al. Binary coding of speech spectrograms using a deep auto-encoder[C]. Proc of the 11th Annual Conf on Int Speech Communication Association. Makuhair, 2010: 1692-1695.
(Chen Y, Zheng D Q, Zhao T J. Chinese relation extraction based on deep belief nets[J]. J of Software, 2012, 23(10): 2572-2585.)
[10]
Bengio Y. Learning deep architectures for AI[J]. Foundations & Trends in Machine Learning, 2009, 2(1): 1-127.
[11]
Yoshua Bengio, Pascal Lamblin, Dan Popovici, et al. Greedy layer-wise training of deep networks[C]. Advances in Neural Information Processing Systems 19 (NIPS 2006). Vancouver, 2007: 153-160.
[12]
Hinton G E, Osindero S, Teh Y. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554.
[13]
Yang Hu, Yong Yu. Learning Restricted Boltzmann Machines using Mode-Hopping MCMC[C]. The 4th Int Conf on Machine Learning and Computing. Xi’an, 2012, 20: 105-110.
[14]
Le Roux, Nicolas, Yoshua Bengio. Representational power of restricted boltzmann machines and deep belief networks[J]. Neural Computation, 2008, 20(6): 1631-1649.
[15]
Thomas P, Karnowski. Deep spatiotemporal feature learning with application to image classification[C]. The 9th Int Conf on Machine Learning and Applications. Washington, 2010: 883-889.
[16]
Li Deng, Dong Yu, John Platt. Scalable stacking and learning for building deep architectures[C]. ICASSP. Kyoto, 2012: 2133-2137.
[17]
Bengio Yoshua, Olivier Delalleau. On the expressive power of deep architectures[C]. Algorithmic Learning Theory. Berlin: Springer /Heidelberg, 2011: 18-36.
[18]
MarcAurelio Ranzato, Christopher Poultney, Sumit Chopra, et al. Efficient learning of sparse representations with an energy-based model[C]. Advances in Neural Information Processing Systems(NIPS 2006). Vancouver, 2007: 1137-1144.