全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

自适应局部图嵌入加权罚支持向量机

DOI: 10.13195/j.kzyjc.2014.0017, PP. 203-214

Keywords: 支持向量机,流形学习,局部结构信息,局部判别信息,全局结构

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对标准SVM不能有效利用数据流形的局部信息以及对数据中的野值敏感的两点不足,提出一种基于自适应局部图嵌入加权罚SVM.算法在保持SVM优化框架不变的情况下,在目标函数中同时加入了对数据整体类间间隔最大化和数据局部流形分布的要求,优化了分类决策边界,简化了核化过程,同时在软间隔的样本惩罚系数中引入了数据的全局结构信息,增强了算法的鲁棒性.在人工、标准和图像数据集上的实验结果表明,所提出的方法是有效的.

References

[1]  陶剑文, 王士同. 局部保留最大信息差v-支持向量机[J]. 自动化学报, 2012, 38 (1): 97-108.
[2]  (Tao J W, Wang S T. Locality-preserved maximum information variance v-support vector machine[J]. Acta Automatic Sinica, 2012, 38(1): 97-108.)
[3]  Vapnik V N. The nature of statistical learning theory[M]. New York: Springer-Verlag, 1995: 59-87.
[4]  Bradford J R, West D R. Improved prediction of protein binding sites using a support vector machines approach[J]. Bioinformatics, 2005, 21(8): 1487-1494.
[5]  Tao Q, Chu D J, Wang J. Recursive support vector machines for dimensionality reduction[J]. IEEE Trans on Neural Networks, 2008, 19(1): 189-193.
[6]  Wu M R, Ye J P. A small sphere and large margin approach for novelty detection using training data with outliers[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2009, 31(11): 2088-2092.
[7]  Song H, Lee I, Zhao L, et al. Adaptive virtual support vector machine for reliability analysis of highdimensional problems[J]. Structural and Multidisciplinary Optimization, 2013, 47(4): 479-491.
[8]  Hwang J P, Choi B, Kim E. Multiclass lagrangian support vector machine[J]. Neural Computing and Applications, 2013, 22(3): 703-710.
[9]  Xue H, Chen S C, Yang Q. Structural support vector machine[J]. Lecture Notes in Computer Science, 2008, 5263(1): 501-511.
[10]  Shivaswamy P K, Jebara T. Maximum relative margin and data-dependent regularization[J]. J of Machine Learning Research, 2010, 32(11): 747-788.
[11]  Scholkopf B, Smola A J, Williamson R C, et al. New support vector algorithms[J]. Neural Computation, 2000, 12(5): 1207-1245.
[12]  Chapelle O, Vapnik V N, Bousquet O, et al. Choosing multiple parameters for support vector machines[J]. Machine Learning, 2002, 46(1): 131-159.
[13]  Suyken J A K, Brabanter J, De Lukas L, et al. Weighted least square support vector machines: Robustness and sparse approximation[J]. Neurocomputing, 2002, 48(4): 85-105.
[14]  Cao P, Zhao D Z, Zaiane O. An optimized cost-sensitive SVM for imbalanced data learning[J]. Lecture Notes in Computer Science, 2013, 7819(1): 280-292.
[15]  Peng X J, Xu D. Robust minimum class variance twin support vector machine classifier[J]. Neural Computing and Applications, 2013, 22(5): 999-1011.
[16]  Lanczos C. Linear differential operators[M]. London: Van Nostrand, 1964: 31-33.
[17]  Zafeiriou S, Tefas A, Pitas I. Minimum class variance support vector machines[J]. IEEE Trans on Image Processing, 2007, 16(10): 2551-2564.
[18]  Fisher R A. The use of multiple measurements in taxonomic problems[J]. Annals of Eugenics, 1936, 7(2): 179-188.
[19]  Cover T M, Hart P E. Nearest neighbor pattern classification[J]. IEEE Trans on Information Theory, 1967, 13(1): 21-27.
[20]  Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 2323-2326.
[21]  Tenenbaum J B, Silva V, Langford J. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290(5500): 2319-2322.
[22]  Belkin M, Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering[J]. Advances in Neural Information Processing System, 2002, 14(9): 585-591.
[23]  Tao Y T, Yang J. The maximized discriminative subspace for manifold learning problem[J]. Lecture Notes in Computer Science, 2013, 7751(1): 784-792.
[24]  Belkin M, Niyogi P, Sindhwani V. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples[J]. J of Machine Learning Research, 2006, 7(12): 2399-2434.
[25]  Wang X M, Chung F L, Wang S T. On minimum class locality preserving variance support vector machine[J]. Pattern Recognition, 2010, 43(8): 2753-2762.
[26]  Gui J,Wang C, Zhu L. Locality preserving discriminant[J]. Lecture Notes in Computer Science, 2009, 5755(1): 566-572.
[27]  高全学, 谢德燕, 徐辉, 等. 融合局部结构和差异信息的监督特征提取算法[J]. 自动化学报, 2010, 36(8): 1101-1114.
[28]  (Gao Q X, Xie D Y, Xu H, et al. Supervised feature extraction based on information fusion of local structure and diversity information[J]. Acta Automatic Sinica, 2010, 36(8): 1101-1114.)
[29]  谢钧, 刘剑. 一种新的局部判别投影方法[J]. 计算机学报, 2011, 34(11): 2243-2250.
[30]  (Xie J, Liu J. A new local discriminant projection method[J]. Chinese J of Computers, 2011, 34(11): 2243-2250.)
[31]  Wang F. A general learning framework using local and global regularization[J]. Pattern Recognition, 2010, 43(9): 3120-3129.
[32]  Yan S, Xu D, Zhang H, et al. Graph embedding and extensions: A general framework for dimensionality reduction[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007, 29(1): 40-51.
[33]  WoodburyMA. Inverting modified matrices[R]. Princeton: Statistical Research Group, Institute for Advanced Study, 1950: 78-80.
[34]  Chun Y D. A generalization of the Sherman-Morrison-Woodbury formula[J]. Applied Mathematics Letters, 2011, 24(9): 1561-1564.
[35]  Simon H K. Neural networks and learning machines[M]. 3rd ed. Englewood Cliffs: Prentice Hall, 2009: 198-228.
[36]  Bartlett P L, Mendelson S. Rademacher and gaussian complexities: Risk bounds and structural results[J]. J of Machine Learning Research, 2002, 3(3): 463-482.
[37]  Koltchinskii V. Rademacher penalties and structural risk minimization[J]. IEEE Trans on Information Theory, 2001, 47(5): 1902-1914.
[38]  Sun S L. Multi-view Laplacian support vector machines[J]. Lecture Notes in Computer Science, 2011, 7121(1): 209-222.
[39]  Zhang T, Tao D, Li X, et al. Patch alignment for dimensionality reduction[J]. IEEE Trans on Knowledge and Data Engineering, 2009, 21(9): 1299-1313.
[40]  Saul L K, Roweis S T. Think globally, fit locally: Unsupervised learning of low dimensional manifolds[J]. J of Machine Learning Research, 2003, 4(12): 119-155.
[41]  Belhumeour P, Hespanha J, Kriegman D. Eigenfaces vs fisherfaces: Recognition using class specific linear projection[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720.
[42]  Xue H, Chen S C, Yang Q. Discriminatively regularized least-squares classification[J]. Pattern Recognition, 2009, 42(1): 93-104.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133