(Dong H B, Huang H K, Yin G S, et al. An overview of the research on coevolutionary algorithms[J]. J of Computer Research and Development, 2008, 45(3): 454-463.)
[3]
Wiegand R P. An analysis of cooperative coevolutionary algorithms[D]. Fairfax: Department of Computer Science, George Mason University, 2003.
[4]
Cantú-Paz E. A survey of parallel genetic algorithms[J]. Calculateurs Paralleles, Reseaux et Systems Repartis, 1998, 10(2): 141-171.
[5]
Alba E, Tomassini M. Parallelism and evolutionary algorithms[J]. IEEE Trans on Evolutionary Computation, 2002, 6(5): 443-462.
[6]
Rosin C D, Belew R K. New methods for competitive coevolution[J]. Evolutionary Computation, 1997, 5(1): 1-29.
[7]
Hillis W D. Co-evolving parasites improve simulated evolution as an optimization procedure[J]. Physica D: Nonlinear Phenomena, 1990, 42(1): 228-234.
[8]
Aitkenhead M J. A co-evolving decision tree classification method[J]. Expert Systems with Applications, 2008, 34(1): 18-25.
[9]
Paredis J. Co-evolutionary constraint satisfaction[C]. Parallel Problem Solving from Nature PPSN III. Berlin: Springer, 1994: 46-55.
[10]
Lohn J D, Kraus W F, Haith G L. Comparing a coevolutionary genetic algorithm for multiobjective optimization[C]. IEEE Congress on Evolutionary Computation. Honolulu, 2002: 1157-1162.
(Cao X B, Luo W J. A co-evolution pattern based on ecological population competition model[J]. J of Software, 2001, 12(4): 556-562.)
[13]
Gu J, Gu M, Cao C, et al. A novel competitive coevolutionary quantum genetic algorithm for stochastic job shop scheduling problem[J]. Computers & Operations Research, 2010, 37(5): 927-937.
[14]
Potter M, Jong K. A cooperative coevolutionary approach to function optimization[C]. Parallel Problem Solving from Nature PPSN III. Berlin: Springer, 1994: 249-257.
[15]
Li X, Yao X. Cooperatively coevolving particle swarms for large scale optimization[J]. IEEE Trans on Evolutionary Computation, 2012, 16(2): 210-224.
[16]
OmidvarM N, Li X, Mei Y, et al. Cooperative co-evolution with differential grouping for large scale optimization[J]. IEEE Trans on Evolutionary Computation, 2014, 18(3): 378-393.
[17]
Yang Z, Tang K, Yao X. Large scale evolutionary optimization using cooperative coevolution[J]. Information Sciences, 2008, 178(15): 2985-2999.
[18]
Goh C K, Tan C K. A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization[J]. IEEE Trans on Evolutionary Computation, 2009, 13(1): 103-127.
[19]
Goh C K, Tan C K, Liu D, et al. A competitive and cooperative co-evolutionary approach to multi-objective particle swarm optimization algorithm design[J]. European J of Operational Research, 2010, 202(1): 42-54.
(Geng H T, Zhu H F, Zhang Q, et al. Co-evolutionary multiobjective
[22]
optimization algorithm with balanced diversity and convergence[J]. Control and Decision, 2013, 28(1): 55-60.)
[23]
Chandra R, Zhang M J. Cooperative coevolution of elman recurrent neural networks for chaotic time series prediction[J]. Neurocomputing, 2012, 86(1): 116-123.
[24]
Chandra R, Frean M, Zhang M J. Crossover-based local search in cooperative co-evolutionary feedforward neural networks[J]. Applied Soft Computing, 2012, 12(9): 2924-2932.
[25]
Chandra R. Memetic cooperative coevolution of elman recurrent neural networks[J]. Soft Computing, 2014, 18(8): 1549-1559.
[26]
Krohling R A, dos Santos Coelho L. Coevolutionary particle swarm optimization using gaussian distribution for solving constrained optimization problems[J]. IEEE Trans on Systems, Man, and Cybernetics, Part B: Cybernetics, 2006, 36(6): 1407-1416.
[27]
Huang F Z, Wang L, He Q. An effective co-evolutionary differential evolution for constrained optimization[J]. Applied Mathematics and Computation, 2007, 186(1): 340-356.
(Tao X M, Xu J, Yang L B, et al. Multi-species cooperative particle swarm optimization algorithm[J]. Control and Decision, 2009, 24(9): 1406-1411.)
[32]
Bessaou M, Pétrowski A, Siarry P. Island model cooperating with speciation for multimodal optimization [C]. Parallel Problem Solving from Nature PPSN VI. Berlin: Springer, 2000: 437-446.
[33]
Jiao L, Wang H, Shang R, et al. A co-evolutionary multi-objective optimization algorithm based on direction vectors[J]. Information Sciences, 2013, 228(1): 90-112.
[34]
Su S, Yu H, Wu Z, et al. A distributed coevolutionary algorithm for multiobjective hybrid flowshop scheduling problems[J]. Int J of Advanced Manufacturing Technology, 2014, 70(1-4): 477-494.
(Zhou D, Sun J, XuWB. Quantum-behaved particle swarm optimization algorithm with cooperative approach[J]. Control and Decision, 2011, 26(4): 582-586.)
[37]
Salto C, Alba E. Designing heterogeneous distributed gas by efficiently self-adapting the migration period[J]. Applied Intelligence, 2012, 36(4): 800-808.
(Liu Z H, Zhang J, Zhang Y J, et al. Competitivecooperative coevolutionary immune-dominant clone selection algorithm for solving the traveling salesman problem[J]. Control Theory & Applications, 2010, 27(10): 1322-1330.)
[42]
Subbu R, Sanderson A C. Modeling and convergence analysis of distributed coevolutionary algorithms[J]. IEEE Trans on Systems, Man, and Cybernetics, Part B: Cybernetics, 2004, 34(2): 806-822.
[43]
Wiegand R P, Liles W C, De Jong K A. Analyzing cooperative coevolution with evolutionary game theory[C]. IEEE Congress on Evolutionary Computation. Honolulu, 2002: 1600-1605.
(Sun X Y, Gong D W. Varying population size cooperative coevolutionary genetic algorithm and its application in optimization[J]. Control and Decision, 2004, 19(12): 1437-1440.)
[46]
Alba E, Troya J M. Influence of the migration policy in parallel distributed gas with structured and panmictic populations[J]. Applied Intelligence, 2000, 12(3): 163-181.
[47]
Ruciński M, Izzo D, Biscani F. On the impact of the migration topology on the island model[J]. Parallel Computing, 2010, 36(10): 555-571.
[48]
Muelas S, Mendiburu A, LaTorre A, et al. Distributed estimation of distribution algorithms for continuous optimization: How does the exchanged information influence their behavior?[J]. Information Sciences, 2014, 268(1): 231-254.
[49]
Boussa¨?d I, Lepagnot J, Siarry P. A survey on optimization metaheuristics[J]. Information Sciences, 2013, 237(10): 82-117.
[50]
Folino G, Pizzuti C, Spezzano G. Parallel hybrid method for sat that couples genetic algorithms and local search[J]. IEEE Trans on Evolutionary Computation, 2001, 5(4): 323-334.
[51]
Alba E, Dorronsoro B. The exploration/exploitation tradeoff in dynamic cellular genetic algorithms[J]. IEEE Trans on Evolutionary Computation, 2005, 9(2): 126-142.
[52]
Zhong W, Liu J, Xue M, et al. A multiagent genetic algorithm for global numerical optimization[J]. IEEE Trans on Systems, Man, and Cybernetics, Part B: Cybernetics, 2004, 34(2): 1128-1141.
[53]
Liu J, Zhong W, Jiao L. A multiagent evolutionary algorithm for combinatorial optimization problems[J]. IEEE Trans on Systems, Man, and Cybernetics, Part B: Cybernetics, 2010, 40(1): 229-240.
(Wu Y L, Jin X Y, Liu G. Chainlike multi-population multi-agent evolutionary algorithm[J]. Control Theory & Applications, 2013, 30(1): 37-53.)
[56]
Li X, Gao L, Li W. Application of game theory based hybrid algorithm for multi-objective integrated process planning and scheduling[J]. Expert Systems with Applications, 2012, 39(1): 288-297.
[57]
Rudolph G. Convergence analysis of canonical genetic algorithms[J]. IEEE Trans on Neural Networks, 1994, 5(1): 96-101.
[58]
Zhang Q, Muhlenbein H. On the convergence of a class of estimation of distribution algorithms[J]. IEEE Trans on Evolutionary Computation, 2004, 8(2): 127-136.
[59]
Blickle T, Thiele L. A comparison of selection schemes used in evolutionary algorithms[J]. Evolutionary Computation, 1996, 4(4): 361-394.
[60]
Zaharie D. Influence of crossover on the behavior of differential evolution algorithms[J]. Applied Soft Computing, 2009, 9(3): 1126-1138.
[61]
Alba E, Dorronsoro B. The exploration/exploitation tradeoff in dynamic cellular genetic algorithms[J]. IEEE Trans on Evolutionary Computation, 2005, 9(2): 126-142.
[62]
Giacobini M, Tomassini M, Tettamanzi A G, et al. Selection intensity in cellular evolutionary algorithms for regular lattices[J]. IEEE Trans on Evolutionary Computation, 2005, 9(5): 489-505.
(Wang L, Zheng D Z. Study on unified framework of hybrid optimization strategies[J]. Control and Decision, 2002, 17(1): 33-36.)
[65]
Ahn C W, An J, Yoo J C. Estimation of particle swarm distribution algorithms: Combining the benefits of PSO and EDAs[J]. Information Sciences, 2012, 192(1): 109-119.
[66]
Shi Y, Liu H, Gao L, et al. Cellular particle swarm optimization[J]. Information Sciences, 2011, 181(20): 4460-4493.
[67]
Aydin M E. Coordinating metaheuristic agents with swarm intelligence[J]. J of Intelligent Manufacturing, 2012, 23(4): 991-999.
[68]
Wang L, Xu Y, Li L. Parameter identification of chaotic systems by hybrid Nelder-Mead simplex search and differential evolution algorithm[J]. Expert Systems with Applications, 2011, 38(4): 3238-3245.
[69]
Burke E, Hyde M, Kendall G, et al. A classification of hyper-heuristic approaches[C]. Handbook of Metaheuristics. New York: Springer, 2010: 449-468.
[70]
Burke E K, Gendreau M, Hyde M, et al. Hyper-heuristics: A survey of the state of the art[J]. J of the Operational Research Society, 2013, 64(12): 1695-1724.
[71]
Xing L, Chen Y, Yang K. Multi-population interactive coevolutionary algorithm for flexible job shop scheduling problems[J]. Computational Optimization and Applications, 2011, 48(1): 139-155.
[72]
Wang Y, Huang J, Dong W S, et al. Two-stage based ensemble optimization framework for large-scale global optimization[J]. European J of Operational Research, 2013, 228(2): 308-320.
[73]
Chen X, Ong Y S, Lim M H, et al. A multi-facet survey on memetic computation [J]. IEEE Trans on Evolutionary Computation, 2011, 15(5): 591-607.
[74]
Neri F, Cotta C. Memetic algorithms and memetic computing optimization: A literature review[J]. Swarm and Evolutionary Computation, 2012, 2(1): 1-14.
(Liu M D. The development of the memetic algorithm[J]. Techniques of Automation & Applications, 2008, 26(11): 1-4.)
[77]
Zhang L, Wang L, Zheng D Z. An adaptive genetic algorithm with multiple operators for flowshop scheduling[J]. The Int J of Advanced Manufacturing Technology, 2006, 27(5/6): 580-587.
[78]
Yoon H S, Moon B R. An empirical study on the synergy of multiple crossover operators[J]. IEEE Trans on Evolutionary Computation, 2002, 6(2): 212-223.
[79]
Martínez-Bernabeu L, Flórez-Revuelta F, Casado-Díaz J M. Grouping genetic operators for the delineation of functional areas based on spatial interaction[J]. Expert Systems with Applications, 2012, 39(8): 6754-6766.
[80]
Elsayed S M, Sarker R A, Essam D L. Selfadaptive differential evolution incorporating a heuristic mixing of operators[J]. Computational Optimization and Applications, 2013, 54(3): 771-790.
[81]
Mallipeddi R, Mallipeddi S, Suganthan P N. Ensemble strategies with adaptive evolutionary programming[J]. Information Sciences, 2010, 180(9): 1571-1581.
[82]
Tasgetiren F M, Suganthan P N, Pan Q K. An ensemble of discrete differential evolution algorithms for solving the generalized traveling salesman problem[J]. Applied Mathematics and Computation, 2010, 215(9): 3356-3368.
[83]
Elsayed S M, Sarker R A, Essam D L. Multi-operator based evolutionary algorithms for solving constrained optimization problems[J]. Computers & Operations Research, 2011, 38(12): 1877-1896.
[84]
Wang H F, Chen Y Y. A coevolutionary algorithm for the flexible delivery and pickup problem with time windows[J]. Int J of Production Economics, 2013, 141(1): 4-13.
[85]
Tongchim S, Chongstitvatana P. Parallel genetic algorithm with parameter adaptation[J]. Information Processing Letters, 2002, 82(1): 47-54.
[86]
Zhao S, Suganthan P N, Zhang Q. Decomposition-based multiobjective evolutionary algorithm with an ensemble of neighborhood sizes[J]. IEEE Trans on Evolutionary Computation, 2012, 16(3): 442-446.
[87]
Tanabe R, Fukunaga A. Evaluation of a randomized parameter setting strategy for island-model evolutionary algorithms[C]. IEEE Congress on Evolutionary Computation. Cancun, 2013: 1263-1270.
[88]
Mallipeddi R, Suganthan P N, Pan Q K, et al. Differential evolution algorithm with ensemble of parameters and mutation strategies[J]. Applied Soft Computing, 2011, 11(2): 1679-1696.
[89]
Elsayed S M, Sarker R A, Mezura-Montes E. Self-adaptive mix of particle swarm methodologies for constrained optimization[J]. Information Sciences, 2014, 277(1): 216-233.
[90]
Franken N. Visual exploration of algorithm parameter space[C]. IEEE Congress on Evolutionary Computation. Trondheim, 2009: 389-398.
[91]
Qu B, Suganthan P. Constrained multi-objective optimization algorithm with an ensemble of constraint handling methods[J]. Engineering Optimization, 2011, 43(4): 403-416.
[92]
Mallipeddi R, Suganthan P N. Ensemble of constraint handling techniques[J]. IEEE Trans on Evolutionary Computation, 2010, 14(4): 561-579.
[93]
Yu E, Suganthan P N. Ensemble of niching algorithms[J]. Information Sciences, 2010, 180(15): 2815-2833.
[94]
Chen S H, Chen M C. Addressing the advantages of using ensemble probabilistic models in estimation of distribution algorithms for scheduling problems[J]. Int J of Production Economics, 2013, 141(1): 24-33.
(Huang Y Q, Zhang X D. Review on interactive evolutionary computation[J]. Control and Decision, 2010, 25(9): 1281-1286.)
[97]
García-Hernández L, Pierreval H, Salas-Morera L, et al. Handling qualitative aspects in unequal area facility layout problem: An interactive genetic algorithm[J]. Applied Soft Computing, 2013, 13(4): 1718-1727.
[98]
Phelps S, K¨oksalan M. An interactive evolutionary metaheuristic for multiobjective combinatorial optimization[J]. Management Science, 2003, 49(12): 1726-1738.
[99]
Sinha A, Korhonen P, Wallenius J, et al. An interactive evolutionary multi-objective optimization algorithm with a limited number of decision maker calls[J]. European J of Operational Research, 2014, 233(3): 674-688.
[100]
Pedro L R, Takahashi R H. INSPM: An interactive evolutionary multi-objective algorithm with preference model[J]. Information Sciences, 2014, 268(1): 202-219.
(Gong D W, Hao G S, Zhou Y, et al. Hierarchical interactive evolutionary computation and its application[J]. Control and Decision, 2004, 19(10): 1117-1120.)
[103]
Tian J, Li M, Chen F. Dual-population based coevolutionary algorithm for designing rbfnn with feature selection[J]. Expert Systems with Applications, 2010, 37(10): 6904-6918.
[104]
Chandra R, Frean M, Zhang M J, et al. Encoding subcomponents in cooperative co-evolutionary recurrent neural networks[J]. Neurocomputing, 2011, 74(17): 3223-3234.
[105]
Thida M, Eng H L, Monekosso D N, et al. A particle swarm optimisation algorithm with interactive swarms for tracking multiple targets[J]. Applied Soft Computing, 2013, 13(6): 3106-3117.
[106]
Chaaraoui A A, Flórez-Revuelta F. Optimizing human action recognition based on a cooperative coevolutionary algorithm[J]. Engineering Applications of Artificial Intelligence, 2014, 31(1): 116-125.
[107]
Ugolotti R, Nashed Y S, Mesejo P, et al. Particle swarm optimization and differential evolution for model-based object detection[J]. Applied Soft Computing, 2013, 13(6): 3092-3105.
[108]
Lai C C, Chen Y C. A user-oriented image retrieval system based on interactive genetic algorithm[J]. IEEE Trans on Instrumentation and Measurement, 2011, 60(10): 3318-3325.
(Yu X Y, Sun S D, Chu W. Parallel collaborative evolutionary genetic algorithm for multi-workshop planning and scheduling problems[J]. Computer Integrated Manufacturing Systems, 2008, 14(5): 991-1000.)
[111]
Wang L, Wang S Y, Xu Y, et al. A bi-population based estimation of distribution algorithm for the flexible job-shop scheduling problem[J]. Computers & Industrial Engineering, 2012, 62(4): 917-926.
[112]
Hao X C, Wu J Z, Chien C F, et al. The cooperative estimation of distribution algorithm: A novel approach for semiconductor final test scheduling problems[J]. J of Intelligent Manufacturing, 2014, 25(5): 867-879.
[113]
Kim H S, Cho S B. Application of interactive genetic algorithm to fashion design[J]. Engineering Applications of Artificial Intelligence, 2000, 13(6): 635-644.
[114]
Ding Y S, Hu Z H, Zhang W B. Multi-criteria decision making approach based on immune co-evolutionary algorithm with application to garment matching problem[J]. Expert Systems with Applications, 2011, 38(8): 10377-10383.
[115]
Zhao F, Li G, Yang C, et al. A human-computer cooperative particle swarm optimization based immune algorithm for layout design[J]. Neurocomputing, 2014, 132(1): 68-78.
[116]
Xiong G, Shi D, Duan X. Multi-strategy ensemble biogeography-based optimization for economic dispatch problems[J]. Applied Energy, 2013, 111(1): 801-811.
[117]
Wang L, Li L P. An effective differential harmony search algorithm for the solving non-convex economic load dispatch problems[J]. Int J of Electrical Power and Energy Systems, 2013, 44(1): 832-843.
(Yang Y, Chen H Y, Zhang Y, et al. A coevolutionary approach to calculate equilibrium for oligopolistic electricity market[J]. Automation of Electric Power Systems, 2009, 33(18): 42-46.)
[120]
Ladjici A, Tiguercha A, Boudour M. Nash equilibrium in a two-settlement electricity market using competitive coevolutionary algorithms[J]. Int J of Electrical Power & Energy Systems, 2014, 57(1): 148-155.
[121]
Niknam T, Azadfarsani E, Jabbari M. A new hybrid evolutionary algorithm based on new fuzzy adaptive pso and nm algorithms for distribution feeder reconfiguration[J]. Energy Conversion and Management, 2012, 54(1): 7-16.
[122]
Yang J M, Kao C Y. A family competition evolutionary algorithm for automated docking of flexible ligands to proteins[J]. IEEE Trans on Information Technology in Biomedicine, 2000, 4(3): 225-237.
[123]
Hu Z, Ding Y, Shao Q. Immune co-evolutionary algorithm based partition balancing optimization for tobacco distribution system[J]. Expert Systems with Applications, 2009, 36(3): 5248-5255.
[124]
Wang L, Li L P. A coevolutionary differential evolution with harmony search for reliability-redundancy optimization[J]. Expert Systems with Applications, 2012, 39(5): 5271-5278.
[125]
He Q, Wang L. An effective co-evolutionary particle swarm optimization for constrained engineering design problems[J]. Engineering Applications of Artificial Intelligence, 2007, 20(1): 89-99.
[126]
Liu B, Wang L, Liu Y, et al. A unified framework for population-based metaheuristics[J]. Annals of Operations Research, 2011, 186(1): 231-262.
[127]
Armbrust M, Fox A, Griffith R, et al. A view of cloud computing[J]. Communications of the ACM, 2010, 53(4): 50-58.
[128]
O’Leary D E. Artificial intelligence and big data[J]. IEEE Intelligent Systems, 2013, 28(2): 96-99.
[129]
Hendrickson B, Kolda T G. Graph partitioning models for parallel computing[J]. Parallel Computing, 2000, 26(12): 1519-1534.