全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于随机匹配的复杂网络最小驱动点集分析

DOI: 10.13195/j.kzyjc.2014.0167, PP. 751-754

Keywords: 复杂网络,结构可控性,最小驱动点集,拓扑分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

控制复杂网络在很多领域都有着重要的应用价值.将控制复杂网络所需的最少节点集合称为最小驱动点集.针对网络的最小驱动点集并不唯一,提出一种随机匹配方法来获取网络中不同的最小驱动点集,并分析最小驱动点集集合的平均度分布以及节点在最小驱动点集集合中的出现频率.研究发现,多数网络的最小驱动点集分布紧密,其节点构成与网络度分布有关;同时,网络中节点的控制重要性与其入度密切相关.所得到的相关结论对于复杂网络的控制具有重要的研究意义.

References

[1]  Fortunato S. Community detection in graphs[J]. Physics Reports, 2010, 486(3): 75-174.
[2]  Ghoshal G, Barabasi A L. Ranking stability and super stable nodes in complex networks[J]. Nature Communications, 2011, 2(7): 394.
[3]  Karsai M, Kivela M, Pan R K, et al. Small but slow world: How network topology and burstiness slow down spreading[J]. Physical Review E, 2011, 83(2): 025102.
[4]  Papadopoulos F, Kitsak M, Serrano Má, et al. Popularity versus similarity in growing networks[J]. Nature, 2012, 489(7417): 537-540.
[5]  Barabási A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439): 509-512.
[6]  Watts D J. Networks, dynamics, and the small-world phenomenon[J]. American J of Sociology, 1999, 105(2): 493-527.
[7]  Vespignani A. Modelling dynamical processes in complex socio-technical systems[J]. Nature Physics, 2012, 8(2160): 32-39.
[8]  Stanoev A, Smilkov D, Kocarev L. Identifying communities by influence dynamics in social networks[J]. Physical Review E, 2011, 84(4): 046102.
[9]  Palla G, Barabasi A L, Vicsek T. Quantifying social group evolution[J]. Nature, 2007, 446(7136): 664-667.
[10]  Liu Y Y, Slotine J J, Barabasi A L. Controllability of complex networks[J]. Nature, 2011, 473(7346): 167-173.
[11]  Nepusz T, Vicsek T. Controlling edge dynamics in complex networks[J]. Nature Physics, 2012, 8(7): 568-573.
[12]  Yan G, Ren J, Lai Y C, et al. Controlling complex networks: How much energy is needed?[J]. Physical Review Letters, 2012, 108(21): 218703.
[13]  Wang W X, Ni X, Lai Y C. Optimizing controllability of complex networks by minimum structural perturbations[J]. Physical Review E, 2012, 85(2): 026115.
[14]  Valiant L G. The complexity of computing the permanent[J]. Theoretical Computer Science, 1979, 8(2): 189-201.
[15]  Hopcroft J E, Karp R M. An n5/2 algorithm for maximum matchings in bipartite[J]. SIAM J on Computing, 1973, 2(4): 225-231.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133