Fortunato S. Community detection in graphs[J]. Physics Reports, 2010, 486(3): 75-174.
[2]
Ghoshal G, Barabasi A L. Ranking stability and super stable nodes in complex networks[J]. Nature Communications, 2011, 2(7): 394.
[3]
Karsai M, Kivela M, Pan R K, et al. Small but slow world: How network topology and burstiness slow down spreading[J]. Physical Review E, 2011, 83(2): 025102.
[4]
Papadopoulos F, Kitsak M, Serrano Má, et al. Popularity versus similarity in growing networks[J]. Nature, 2012, 489(7417): 537-540.
[5]
Barabási A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439): 509-512.
[6]
Watts D J. Networks, dynamics, and the small-world phenomenon[J]. American J of Sociology, 1999, 105(2): 493-527.
[7]
Vespignani A. Modelling dynamical processes in complex socio-technical systems[J]. Nature Physics, 2012, 8(2160): 32-39.
[8]
Stanoev A, Smilkov D, Kocarev L. Identifying communities by influence dynamics in social networks[J]. Physical Review E, 2011, 84(4): 046102.
[9]
Palla G, Barabasi A L, Vicsek T. Quantifying social group evolution[J]. Nature, 2007, 446(7136): 664-667.
[10]
Liu Y Y, Slotine J J, Barabasi A L. Controllability of complex networks[J]. Nature, 2011, 473(7346): 167-173.
[11]
Nepusz T, Vicsek T. Controlling edge dynamics in complex networks[J]. Nature Physics, 2012, 8(7): 568-573.
[12]
Yan G, Ren J, Lai Y C, et al. Controlling complex networks: How much energy is needed?[J]. Physical Review Letters, 2012, 108(21): 218703.
[13]
Wang W X, Ni X, Lai Y C. Optimizing controllability of complex networks by minimum structural perturbations[J]. Physical Review E, 2012, 85(2): 026115.
[14]
Valiant L G. The complexity of computing the permanent[J]. Theoretical Computer Science, 1979, 8(2): 189-201.
[15]
Hopcroft J E, Karp R M. An n5/2 algorithm for maximum matchings in bipartite[J]. SIAM J on Computing, 1973, 2(4): 225-231.