全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于超越几何规划的热轧操作优化问题

DOI: 10.13195/j.kzyjc.2014.0091, PP. 703-708

Keywords: 超越几何规划,操作优化,热轧,全局优化

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对钢铁热轧生产操作优化问题,建立热轧操作优化模型.该模型的难点是,模型具有高度非线性的特征,难以获得最优解.考虑模型数学表达式的结构特点,将操作优化模型等价转化为超越几何规划模型,由于获得的模型存在对数项,无法直接有效求解,利用模型的结构特点,通过数学变换和理论分析,转化为凸规划模型,从而利用凸规划软件获得最优解,为操作优化问题获得全局最优解提供一种新方法.

References

[1]  孙一康.带钢热连轧的模型与控制[M]. 北京: 冶金工业出版社, 2002: 170-181.
[2]  (Sun Y K. Model and control of hot strip mill[M]. Beijing: Press of Metallurgy Industry, 2002: 170-181.)
[3]  李维刚, 刘相华. 热连轧机轧制力成比例负荷分配的CLAD算法[J]. 东北大学学报: 自然科学版, 2012, 33(3): 354-356.
[4]  (Li W G, Liu X H. CLAD algorithm of rolling force ratio load distribution on hot strip mill[J]. J of Northeastern University: Natural Science, 2012, 33(3): 354-356.)
[5]  胡长斌, 童朝南, 彭开香. 改进型复杂过程全局进化算法在热连轧负荷分配中的应用[J]. 控制与决策, 2012, 27(1): 15-27.
[6]  (Hu C B, Tong C N, Peng K X. Load distribution optimization of hot strip mills with improvedevolutionary algorithm for complex-process optimization[J]. Control and Decision, 2012, 27(1): 15-27.)
[7]  康德孚. 大困难度几何规划问题程序设计方法[J]. 东北农学院学报, 1985, 1(1): 83-92.
[8]  (Kang D F. A method for greater difficult degree geomitric programming on the programming[J]. J of Northeast Agricultural College, 1985, 1(1): 83-92.)
[9]  Lupt′??ˇ??k M. Geometric programming method and applications[J]. Operations Research Spektrum, 1981, 2(3): 129-143.
[10]  Michael D Intriligator. Math ematical optimization and economic theory[M]. Society for Industrial Mathematics, 1971: 251.
[11]  Lidor G, Wilde D J. Transcendental geometric programming[J]. J of Optimization Theory and Applications, 1978, 26(1): 77-96.
[12]  李海军. 热轧带钢精轧过程控制系统与模型的研究[D]. 沈阳: 东北大学材料与冶金学院, 2008.
[13]  (Li H J. Research on rolling process control system and model for hot strip finishing mills[D]. Shenyang: Materials Forming Engineering, Northeastern University, 2008.)
[14]  刘战英. 轧制变形规程优化设计[M]. 北京: 冶金工业出版社, 1996: 186-189.
[15]  (Liu Z Y. Optimization design of rolling deformation schedule[M]. Beijing: Press of Metallurgy Industry, 1996: 186-189.)
[16]  Farnaz Ghazi Nezami, Seyed Jafar Sadjadi, Mir Bahador AryaNezhad. A geometric programming approach for a nonlinear joint production-marketing problem[C]. IEEE Int Association of Computer Science and Information Technology. Beijing, 2009: 308-312.
[17]  胡毓达. 非线性规划[M].北京: 高等教育出版社, 1990: 45-46.
[18]  (Hu M D. Nonlinear programming[M]. Beijing: Higher Education Press, 1990: 45-46.)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133