全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于图变换的图像压缩采样与分类

DOI: 10.13195/j.kzyjc.2013.1681, PP. 617-622

Keywords: 压缩采样,图像分类,图变换,特征值分解

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出一种基于图论表示的正交变换基,并在此基础上对图像进行压缩采样与压缩域直接分类.首先,充分利用图像的边缘特性和像素关系,给出一种图像的图论表示方法;然后,通过图Laplacian矩阵的特征值分解得到其特征向量矩阵作为正交变换基,由此得到图像的图变换域稀疏表示;最后,利用随机投影后的压缩采样特征向量直接对分类器进行训练和测试,不仅保持了与原空间相当的分类精度,还大量地减少了训练和测试时间以及计算/存储代价.

References

[1]  Candes E. Compressive sampling[C]. Proc of Int Congress of Mathmaticians. Madrid, 2006: 1433-1452.
[2]  Donoho D. Compressed sensing[J]. IEEE Trans on Information Theory, 2006, 52(4): 1289-1306.
[3]  尹宏鹏, 刘兆栋, 柴毅, 等. 压缩感知综述[J]. 控制与决策, 2013, 28(10): 1441-1445.
[4]  (Yin H P, Liu Z D, Chai Y, et al. Survey of compressed sensing[J], Control and Decision, 2013, 28(10): 1441-1445.)
[5]  李树涛, 魏丹. 压缩传感综述[J]. 自动化学报, 2009, 35(11): 1369-1377.
[6]  (Li S T, Wei D. A survey on compressive sensing[J]. Acta Automatica Sinica, 2009, 35(11): 1369-1377.)
[7]  焦李成, 杨淑媛, 刘芳, 等. 压缩感知回顾与展望[J]. 电子学报, 2011, 39(7): 1651-1662.
[8]  (Jiao L C, Yang S Y, Liu F, et al. Developement and prospect of compressive sensing[J]. Acta Electronica Sinica, 2011, 39(7): 1651-1662.)
[9]  Herrmann F J, Hennenfent G. Non-parametric seismic data recovery with curvelet frames[J]. Int J of Geophysical, 2008, 173(1): 233-248.
[10]  Duarte M F, Davenport M A, Takhar D, et al. Singlepixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 83-91.
[11]  Wright J, Yang J A, Ganesh A, et al. Robust face recognition via sparse representation[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
[12]  宋湘成, 焦李成. 基于稀疏表示及光谱信息的高光谱遥感图像分类[J]. 电子与信息学报, 2012, 34(2): 268-273.
[13]  (Song X C, Jiao L C. Classification of hyperspectral remote sensing image based on sparse representation and spectral information[J]. J of Electronics & Information Technology, 2012, 34(2): 268-273.)
[14]  张新征, 黄培康. 基于贝叶斯压缩感知的SAR 目标识别[J]. 系统工程与电子技术, 2013, 35(1): 40-44.
[15]  (Zhang X Z, Huang P K. SAR ATR based on bayesian compressive sensing[J]. System Engineering and Electronics, 2013, 35(1): 40-44.)
[16]  蔡骋, 张明, 朱俊平. 基于压缩感知理论的杂草种子分类识别[J]. 中国科学: 信息科学, 2010, 40(增): 160-172.
[17]  (Cai C, Zhang M, Zhu J P. Weed seeds classification based on compressive sensing theory[J]. Science China: Information Science, 2010, 40(S): 160-172.)
[18]  魏冬梅, 周卫东. 采用压缩感知的人脸识别算法[J]. 计算机工程, 2011, 37(18) : 10-12.
[19]  (Wei D M, Zhou W D. Face recognition algorithm using compressive sensing[J]. Computer Engineering, 2011, 37(18): 10-12.)
[20]  朱明, 高文, 郭立强. 压缩感知理论在图像处理领域中的应用[J]. 中国光学, 2011, 4(5): 441-447.
[21]  (Zhu M, Cao W, Guo L Q. Application of compressed sensing theory in image processing[J]. Chinese Optics, 2011, 4(5): 441-447.)
[22]  朱丰, 张群, 柏又青, 等. 一种新的基于遗传算法的压缩感知重构方法及其在SAR 高分辨距离像重构中的应 用[J]. 控制与决策, 2012, 27(11): 1669-1675.
[23]  (Zhu F, Zhang Q, Bai Y Q, et al. A novel reconstruction method based on genetic algorithm in CS theory and its application in SAR HRRP reconstruction[J]. Control and Decision, 2012, 27(11): 1669-1675.)
[24]  Candes E, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Trans on Information Theory, 2006, 52(4): 489-509.
[25]  Baraniuk R. Compressive sensing[J]. IEEE Signal Processing Magazine, 2007, 24(4): 118-121.
[26]  Candes E, Tao T. Decoding by linear programming[J]. IEEE Trans on Information Theory, 2005, 51(12): 4203-4215.
[27]  Tropp J, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Trans on Information Theory, 2007, 53(12): 4655-4666.
[28]  Donoho D, Tsaig Y. Extensions of compressed sensing[J]. Signal Processing, 2006, 86(3): 533-548.
[29]  Tropp J A. Greed is good: Algorithmic results for sparse approximation[J]. IEEE Trans on Information Theory, 2004, 50(10): 2231-2242.
[30]  Donoho D, Ysaig Y. Fast solution of l1-norm minimization problems when the solution may be sparse[R]. Palo Alto: Stanford University, 2008.
[31]  Figueiredo M A T, Nowak R D, Wright S J. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problem[J]. J of Selected Topics in Signal Processing, 2007, 1(4): 586-598.
[32]  Shen G, Kim W S, Ortega A, et al. Edge-aware intra prediction for depth-map coding[C]. Proc of the 17th Int Conf on Image Processing. Hong Kong, 2010: 3393-3396.
[33]  Shuman D I, Narang S K, Frossard P, et al. The emerging field of signal processing on graphs: Extending highdimension data analysis to networks and other irregular domains[J]. IEEE Signal Processing Magazine, 2013, 30(3): 83-98.
[34]  Li P, Hastie T J, Church K W. Very sparse random projections[C]. Proc of the 12th ACM Int Conf on Knowledge Discovery & Data mining. New York, 2006: 287-296.
[35]  Achlioptas D. Data-friendly random projections: Johnson-Lindenstrauss with binary coins[J]. J of Computer & System Sciences, 2003, 66(4): 671-687.
[36]  尹晓慧, 张宝菊, 王为, 等. 基于改进层式DCT 的压缩感知图像处理[J]. 计算机工程, 2012, 38(9): 226-228.
[37]  (Yin X H, Zhang B J, Wang W, et al. Compressed sensing image processing based on improved layered DCT[J]. Computer Engineering, 2012, 38(9): 226-228.)
[38]  岑翼刚, 陈晓方, 岑丽辉, 等. 基于单层小波变换的压缩感知图像处理[J]. 通信学报, 2010, 31(8A): 52-55.
[39]  (Cen Y G, Chen X F, Cen L H, et al. Compressed sensing based on the single layer wavelet transform for image processing[J]. J of Communications, 2010, 31(8A): 52-55.)
[40]  Hsu C W, Lin C J. A comparison of methods for multiclass support vector machines[J]. IEEE Trans on Neural Network, 2002, 13(2): 415-425.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133