全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于自适应边界向量提取的多尺度v-支持向量机建模

DOI: 10.13195/j.kzyjc.2014.0044, PP. 721-726

Keywords: 大样本建模,边界向量提取,多尺度学习,v-支持向量机

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对??-支持向量机(v-SVM)用于大规模、多峰样本建模时易出现训练速度慢和回归精度低的问题,提出基于边界向量提取的多尺度v-SVM建模方法.该方法采用一种自适应边界向量提取算法,从训练样本中预提取出包含全部支持向量的边界向量集,以缩减训练样本规模,并通过求解多尺度v-SVM二次规划问题获取全局最优回归模型,从多个尺度上对复杂分布样本进行逼近.仿真结果表明,基于边界向量提取的多尺度v-SVM比v-SVM具有更好的回归结果.

References

[1]  钱学森, 于景元, 戴汝为. 开放的复杂巨系统及其方法论[J]. 城市发展研究, 2005, 12(5): 1-8.
[2]  (Qian X S, Yu J Y, Dai R W. The study of open complex giant system and its methodology[J]. Urban Studies, 2005, 12(5): 1-8.)
[3]  Vapnik V N. The nature of statistical learning theory[M]. New York: Spring-Verlag, 1995: 123-167.
[4]  张学工. 关于统计学习理论与支持向量机[J]. 自动化学报, 2000, 26(1): 32-42.
[5]  (Zhang X G. Introduction to statistical learning theory and support vector machines[J]. Acta Automatica Sinica, 2000, 26(1): 32-42.)
[6]  Shi Jinhong, Su Mingyang, Chen Yuansi. A novel intrusion detection system based on hierarchical clustering and support vector machines[J]. Expert Systems with Application, 2011, 38(1): 175-181.
[7]  Niu Dongxiao, Wei Yanan. An improved short-term power load combined forecasting with ARMA-GRACH-ANN-SVM based on FHNN similar-day clustering[J]. J of Software, 2013, 8(3): 341-346.
[8]  丁志勇, 杨苹, 杨曦, 等. 基于连续时间段聚类的支持向量机风电功率预测方法[J]. 电力系统自动化, 2012, 36(14): 131-135.
[9]  (Ding Z Y, Yang P, Yang X, et al. Wind power prediction method based on sequential time clustering support vector machine[J]. Automation of Electric Power Systems, 2012, 36(14): 131-135.)
[10]  陈强, 任雪梅. 基于多核最小二乘支持向量机的永磁同步电机混沌建模及其实时在线预测[J]. 物理学报, 2010, 59(4): 2311-2318.
[11]  (Chen Q, Ren X M. Chaos modeling and real-time online prediction of permanent magnet synchronous motor based on multiple kernel least squares support vector machine[J]. Acta Physica Sinica, 2010, 59(4): 2311-2318.)
[12]  周金柱. 集成先验知识的多核线性规划支持向量回归[J]. 自动化学报, 2011, 37(3): 360-370.
[13]  (Zhou J Z. Multiple kernel linear programming support vector regression incorporating prior knowledge[J]. Acta Automatica Sinica, 2011, 37(3): 360-370.)
[14]  Cai Yanning, Wang Hongqiao. A multiple-kernel LSSVR
[15]  method for separable nonlinear system identifcation[J]. J of Control Theory and Applications, 2013, 11(4): 651-655.
[16]  汪洪桥, 蔡艳宁, 孙富春, 等. 多尺度核方法的自适应 序列学习及应用[J]. 模式识别与人工智能, 2011, 24(1): 72-81.
[17]  (Wang H Q, Cai Y N, Sun F C, et al. Adaptive sequence learning and applications for multi-scale kernel method[J]. Pattern Recognition and Artificial Intelligence, 2011, 24(1): 72-81.)
[18]  焦李成, 张莉, 周伟达. 支撑向量预选取的中心距离比值法[J]. 电子学报, 2001, 29(3): 383-386.
[19]  (Jiao L C, Zhang L, Zhou W D. Center distance ratio method support vector pre-selection[J]. Acta Electronica Sinica, 2001, 29(3): 383-386.)
[20]  李青, 焦李成. 基于向量投影的支撑向量预选取[J]. 计算机学报, 2005, 28(2): 145-151.
[21]  (Li Q, Jiao L C. Pre-extracting support vector for support vector machine based on vector projection[J]. Chinese J of Computer, 2005, 28(2): 145-151.)
[22]  Kim M. Accelerated max-margin multiple kernel learning[J]. Applied Intelligence, 2013, 38(1): 45-57.
[23]  任世锦, 吴铁军. 基于径向基小波核的多尺度小波支持向量机[J]. 电路与系统学报, 2008, 13(4): 70-75.
[24]  (Ren S J,Wu T J. Multi-scale wavelet SVM based on radial wavelet kernel[J]. J of Circuits and Systems, 2008, 13(4): 70-75.)
[25]  吴奇, 严洪森. 基于混沌??-支持矢量机的产品销售预测模型[J]. 机械工程学报, 2010, 46(7): 128-135.
[26]  (Wu Q, Yan H S. Forecasting model of product sales based on the chaotic ??-support vector machine[J]. J of Mechanical Engineering, 2010, 46(7): 128-135.)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133