全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于扩展原理的混合型证据推理不确定决策方法

DOI: 10.13195/j.kzyjc.2014.0144, PP. 670-676

Keywords: 扩展原理,混合证据推理,不确定多属性决策,模糊质心

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出一种基于扩展原理的混合证据推理不确定决策模型.通过??截集将同一决策问题中各属性使用的精确数、区间数和模糊数等异构评估信度统一分解为区间结构,采用区间证据推理方法求解各隶属度下的效用区间,并按隶属度次序重组方案效用;化简模糊数质心公式,并用于模糊定量评估的信度计算和方案模糊效用的排序;最后,通过具体实例验证了所提出方法的有效性和可行性.将该方法在算例中的适用情况进行比较和分析,结果表明所提出的方法具有良好的适应性.

References

[1]  Guo M, Yang J B, Chin K S, et al. Evidential reasoning approach for multiattribute decision analysis under both fuzzy and interval uncertainty[J]. IEEE Trans on Fuzzy Systems, 2009, 17(3): 683-697.
[2]  Yang J B, Singh M G. An evidential reasoning approach for multiple-attribute decision making with uncertainty[J]. IEEE Trans on Systems, Man, and Cybernetics, 1994, 24(1): 1-18.
[3]  Yang J B, Xu D L. On the evidential reasoning algorithm for multiple attribute decision analysis under uncertainty[J]. IEEE Trans on System, Man, and Cybernetics, Part A: Systems and Humans, 2002, 32(3): 289-304.
[4]  Xu D L, Yang J B, Wang Y M. The evidential reasoning approach for multi-attribute decision analysis under interval uncertainty[J]. European J of Operational Research, 2006, 174(3): 1914-1943.
[5]  Wang Y M, Yang J B, Xu D L, et al. The evidential reasoning approach for multiple attribute decision analysis using interval belief degrees[J]. European J of Operational Research, 2006, 175(1): 35-66.
[6]  Guo M, Yang J B, Chin K S, et al. Evidential reasoning based preference programming for multiple attribute decision analysis under uncertainty[J]. European J of Operational Research, 2007, 182(3): 1294-1312.
[7]  Yang J B, Wang Y M, Xu D L, et al. The evidential reasoning approach MADA under both probabilistic and fuzzy uncertainties[J]. European J of Operational Research, 2006, 171(1): 309-343.
[8]  Wang J Q, Zhang H Y, Zhang Z. Fuzzy multi-criteria decision-making approach with incomplete information based on evidential reasoning[J]. J of Systems Engineering and Electronics, 2010, 21(4): 604-608.
[9]  Zhou M, Liu X B, Yang J B. Evidential reasoning based nonlinear programming model for MCDA under fuzzy weight and utilities[J]. Int J of Intelligent Systems, 2010, 25(1): 31-58.
[10]  Gao J, Yan J J, Duanmu Z Y. Evidential reasoning based on the fuzzy beliefs[C]. The 3rd IEEE Int Conf on Computer Science and Information Technology. Chengdu: IEEE Computer Society, 2010: 103-107.
[11]  周谧. 基于证据推理的多属性决策中若干问题的研究[D]. 合肥: 合肥工业大学管理学院, 2009: 36-38.
[12]  ( Zhou M. Research on some problems in the multiple attribute decision making based on evidential reasoning approach[D]. Hefei: The School of Management, Hefei University of Technology, 2009: 36-38.)
[13]  夏勇其, 吴祈宗. 一种混合型多属性决策问题的TOPSIS 方法[J]. 系统工程学报, 2004, 19(6): 630-634.
[14]  (Xia Y Q, Wu Q Z. A technique of order preference by similarity to ideal solution for hybrid multiple attribute decision making problems[J]. J of Systems Engineering, 2004, 19(6): 630-634.)
[15]  梁昌勇, 戚筱雯, 丁勇, 等. 一种基于TOPSIS 的混合型多属性群决策方法[J]. 中国管理科学, 2012, 20(4): 109-116.
[16]  (Liang C Y, Qi X W, Ding Y, et al. A hybrid multi-criteria group decision making with TOPSIS method[J]. Chinese J of Management Science, 2012, 20(4): 109-116.)
[17]  陈孝新. 一种基于证据推理的混合型灰色多属性群决策方法[J]. 控制与决策, 2011, 26(6): 831-836.
[18]  (Chen X X. Hybrid grey multiple attribute group decision-making method based on evidential reasoning approach[J]. Control and Decision, 2011, 26(6): 831-836.)
[19]  Zadeh L A. The concept of linguistic variable and its application to approximate reasoning-I[J]. Information Sciences, 1975, 8(3): 199-249.
[20]  Wang Y M. Centroid defuzzification and the maximizing set and minimizing set ranking based on alpha level sets[J]. Computers & Industrial Engineering, 2009, 57(1): 228-236.
[21]  Wang Y M, Yang J B, Xu D L, et al. Consumer preference prediction by using a hybrid evidential reasoning and belief rule-based methodology[J]. Expert Systems with Applications, 2009, 36(4): 8421-8430.
[22]  Wang Y M, Yang J B, Xu D L. Environment impact assessment using the evidential reasoning approach[J]. European J of Operational Research, 2006, 174(3): 1885-1913.
[23]  Wang Y M, Taha M S, Elhag. On the normalization of interval and fuzzy weights[J]. Fuzzy Sets and Systems, 2006, 157(18): 2456-2471.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133