全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于直觉模糊熵的专家权重确定方法及其验证

DOI: 10.13195/j.kzyjc.2014.0666, PP. 1233-1238

Keywords: 多属性群决策,专家权重,直觉模糊熵,直觉模糊集,判断矩阵

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对专家判断信息以直觉模糊集给出的直觉模糊群决策矩阵,提出一种新的客观确定专家权重的方法.与传统的通过专家评价的差异程度来确定专家权重的思路不同,该方法通过定义直觉模糊集的模糊熵计算专家判断信息的模糊程度,进而确定每位专家的权重,并对基于犹豫度、几何距离、相似度量和不确定程度4类模糊熵的定义对专家权重结果的影响进行实验和仿真分析.仿真结果表明,专家的权重不仅取决于不同类模糊熵的定义,还与专家个数和属性个数相关.

References

[1]  Li D F, Wang Y C, Liu S. Fractional programming methodology for multi-attribute group decision-making using IFS[J]. Applied Soft Computing, 2009, 9(1): 219-225.
[2]  Wei G W. Some induced geometric aggregation operators with intuitionistic fuzzy information and their application to group decision making[J]. Applied Soft Computing, 2010, 10(2): 423-431.
[3]  Xu Z S, Cai X Q. Nonlinear optimization models for multiple attribute group decision making with intuitionistic fuzzy information[J]. Int J of Intelligent Systems, 2010, 25(6): 489-513.
[4]  万树平. 基于Vague 多属性群决策专家权重的确定[J]. 应用数学与计算数学学报, 2010, 24(1): 45-52.
[5]  (Wan S P. Congregation of the experts’ weights based on vague for group decision-making problem with incomplete information[J]. Communication on Applied Mathematics and Computation, 2010, 24(1): 45-52.)
[6]  Chen Z, Yang W. A new multiple attribute group decision making method in intuitionistic fuzzy setting[J]. Applied Mathematical Modelling, 2011, 35(9): 4424-4437.
[7]  Chen T Y, Li C H. Determining objective weights with intuitionistic fuzzy entropy measures: A comparative analysis[J]. Information Sciences, 2010(180): 4207-4222.
[8]  Burillo P, Bustince H. Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets[J]. Fuzzy Sets and Systems, 1996, 78(3): 305-316.
[9]  Szmidt E, Kacprzyk J. Entropy for intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 2001, 118(3): 467-477.
[10]  王毅, 雷英杰. 一种直觉模糊熵的构造方法[J]. 控制与决策, 2007, 22(12): 1390-1394.
[11]  (Wang Y, Lei Y J. A technique for constructing intuitionistic fuzzy entropy[J]. Control and Decision, 2007, 22(12): 1390-1394.)
[12]  Zeng W, Li H. Relationship between similarity measure and entropy of interval valued fuzzy sets[J]. Fuzzy Sets and Systems, 2006, 157(11): 1477-1484.
[13]  彭芳艳, 梁家荣, 伍华健. Vague 集模糊熵的新构造方法[J]. 计算机工程与应用, 2009, 45(29): 52-54.
[14]  (Peng F Y, Liang J R,Wu H J. New construction method of fuzzy entropy of Vague sets[J]. Computer Engineering and Applications, 2009, 45(29): 52-54.)
[15]  Xu Z S. Intuitionistic preference relations and their application in group decision making[J]. Information Sciences, 2007, 177(11): 2363-2379.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133