全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种基于信念修正思想的SVR增量学习算法

DOI: 10.13195/j.kzyjc.2014.0757, PP. 1315-1320

Keywords: 信念修正,增量学习,支持向量回归,认知状态,机场噪声

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对实际应用中数据的批量到达,以及系统的存储压力和学习效率低等问题,提出一种基于信念修正思想的SVR增量学习算法.首先从历史样本信息中提取信念集,根据信念集和新增数据的特点选择相应的信念集建立支持向量回归模型并进行预测;然后对信念集进行修正,调整当前认知状态,使该算法对在线和批处理增量学习都有很好的适应性.在标准数据集上的测试验证了算法的良好性能;在某机场噪声实测数据上的对比实验也表明,该算法的性能明显优于传统学习算法和一般增量学习算法.

References

[1]  Syed N A, Liu H, Sung K K. Incremental learning with support vector machines[C]. Proc of Int Joint Conf on Artificial Intelligence. San Jose, 1999: 641-642.
[2]  Mitra P, Murthy C A, Pal S K. Data condensation in large databases by incremental learning with support vector machines[C]. Proc of the 15th Int Conf on Pattern Recognition. Los Alamitos, 2000: 708-711.
[3]  Okamato K, Ozawa S, Abe S. A fast incremental learning algorithm of RBF networks with long-term memory[C]. Proc of the Int Joint Conf on Neural Networks. Portland, 2003: 102-107.
[4]  Zhu Z F, Zhu X Q, Guo Y F. Inverse matrix-free incremental proximal support vector machine[J]. Decision Support Systems, 2012, 53(3): 395-405.
[5]  Zheng J, Shen F R, Fan H J. An online incremental learning support vector machine for large-scale data[J]. Neural Computing and Applications, 2013, 22(5): 1023-1035.
[6]  Du H L, Teng S H, Zhu Q F. Fast SVM incremental learning based on clustering algorithm[C]. Intelligent Computing and Intelligent Systems. Piscataway, 2009: 13-17.
[7]  Schlimmer J C, Granger Jr R H. Incremental learning from noisy data[J]. Machine Learning, 1986, 1(3): 317-354.
[8]  Zhang L, Zhou W D, Jiao L C. Pre-extracting support vectors for support vector machine[C]. Proc of the 5th Int Conf on Signal Processing. Beijing: 2000: 1432-1435.
[9]  Cauwenberghs G, Poggio T. Incremental and decremental support vector machine learning[J]. Advances in Neural Information Processing Systems, 2001, 44(13): 409-415.
[10]  Li Z Y, Zhang J F, Hu S S. Incremental support vector machine algorithm based on multi-kernel learning[J]. J of Systems Engineering and Electronics, 2011, 22(4): 702-706.
[11]  Elwell R, Polikar R. Incremental learning of concept drift in nonstationary environments[J]. Neural Networks, 2011, 22(10): 1517-1531.
[12]  Gardenfors, Peter. Belief revision[M]. London: Cambridge University Press, 2003: 1-9.
[13]  Alchourron C E, Gardenfors P, Makinson D. On the logic of theory change: Partial meet contraction and revision functions[J]. J of Symbolic Logic, 1985, 50(2): 510-530.
[14]  Vapnik V. The nature of statistical learning theory[M]. New York: Springer-Verlag, 1995: 5-13.
[15]  Maynard-Reid I I P, Shoham Y. Belief fusion: Aggregating pedigreed belief states[J]. J of Logic, Language and Information, 2001, 10(2): 183-209.
[16]  Kfir-Dahav N E, Tennenholtz M. Multi-agent belief revision[C]. Proc of the 6th Conf on Theoretical Aspects of Rationality and Knowledge. San Francisco, 1996: 175-194.
[17]  Satoh K, Yamamoto K. Speculative computation with multi-agent belief revision[C]. Proc of the 1st Int Joint Conf on Autonomous Agents and Multiagent Systems. Bologna, 2002: 897-904.
[18]  Wagstaff K, Cardie C, Rogers S. Constrained ??-means clustering with background knowledge[C]. Proc of the 18th Int Conf on Machine Learning. Washington DC, 2001: 577-584.
[19]  Dubois D, Lang J, Prade H. Automated reasoning using possibilistic logic: Semantics, belief revision, and variable certainty weights[J]. Knowledge and Data Engineering, 1994, 6(1): 64-71.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133