全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

永磁同步电动机的分数阶时域和频域建模

DOI: 10.13195/j.kzyjc.2014.1001, PP. 1546-1550

Keywords: 分数阶,建模,永磁同步电动机,输出误差辨识算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用机理与数据相结合的建模方法对永磁同步电动机进行分数阶时域和频域建模.在分数阶时域建模方法中,设计伪随机激励信号,获取实时实验数据并采用输出误差辨识算法来获取分数阶阶次;在分数阶频域建模方法中,由实时实验数据绘制出电动机的对数频率特性曲线.采用分数阶频域建模中经典Levy辨识算法,利用加权函数加以改进,得到永磁同步电动机分数阶模型辨识结果.最后通过对两种方法得到的结果进行对比表明了所提出模型的可靠性.

References

[1]  Gutierrez R E, Rosario J M, Machado J T. Fractional order calculus: Basic concepts and engineering applications[J]. Mathematical Problems in Engineering, 2010, 96(12): 1207-1223.
[2]  Gollee H, Mamma A, Loram I D. Frequency-domain identification of the human controller[J]. Biological Cybernetics, 2012, 106(6): 359-372.
[3]  Schafer I, Kruger K. Modelling of coils using fractional derivatives[J]. J of Magnetism and Magnetic Materials, 2006, 307(1): 91-98.
[4]  Tenreiro Machado J A, Jesus S, Alexandra Galhano, et al. Fractional order electromagnetics[J]. Signal Processing, 2006, 86(10): 2637-2644.
[5]  Petras I. A note on the fractional-order Chua’s system[J]. Chaos Solitons and Fractals, 2008, 38(1): 140-147.
[6]  Jesus I S, Machado J A. Development of fractional order capacitors based on electrolyte processes[J]. Nonlinear Dynamics, 2009, 56(1/2): 45-55.
[7]  胡建辉, 邹继斌. 具有不确定参数永磁同步电动机的自适应反步控制[J]. 控制与决策, 2006, 21(11): 1264-1269.
[8]  (Hu J H, Zou J B. Adaptive backstepping control of permanent magnet synchronous motors with parameter uncertainties[J]. Control and Decision, 2006, 21(11): 1264-1269.)
[9]  张碧陶, 皮佑国. 永磁同步电机伺服系统模糊分数阶滑模控制[J]. 控制与决策, 2012, 27(12): 1776-1780.
[10]  (Zhang B T, Pi Y G. Fractional order fuzzy sliding mode control for permanent magnet synchronous motor servo drive[J]. Control and Decision, 2012, 27(12): 1776-1780.)
[11]  王瑞萍, 史步海, 皮佑国. 基于分数阶控制器的PMSM恒速控制[J]. 华南理工大学学报: 自然科学版, 2012, 40(3): 119-125.
[12]  (Wang R P, Shi B H, Pi Y G. Constant velocity control of PMSM based on fractional-order controller[J]. J of South China University of Technology: Natural Science Edition, 2012, 40(3): 119-125.)
[13]  Luo Y, Chen Y Q. Fractional order [proportional derivative] controller for a class of fractional order systems[J]. Automatic, 2009, 45(10): 2446-2450.
[14]  高远, 范健文, 罗文广, 等. 分数阶永磁同步电机的混沌运动及其控制研究[J]. 武汉理工大学学报, 2012, 34(7): 134-140.
[15]  (Gao Y, Fan J W, Luo W G, et al. Chaos in the fractional order permanent magnet synchronous motor and its control[J]. J of Wuhan University of Science and Technology, 2012, 34(7): 134-140.)
[16]  陈伯时. 电力拖动自动控制系统—–运动控制系统[M]. 北京: 机械工业出版社, 2003: 32-40.
[17]  (Chen B S. Electric power drag automatic control system—Motion control system[M]. Beijing: China Machine Press, 2003: 32-40.)
[18]  Thierry P, Jean-claude T. Identification of fractional systems using an output-error technique[J]. Nonlinear Dynamics, 2004, 38(1-4): 133-154.
[19]  Hartley T T, Lorenzo C F. Fractional-order system identification based on continuous order-distributions[J]. Signal Process, 2003, 83(11): 2287-2300.
[20]  Vinagre B M. Modelado Y control de dinamicos caracterizados por ecuaciones integro-diferenciales de orden fractional[D]. Madrid: Universidad Nacional de Educacion a distancia, Universitat of Extremadura, 2001: 55-57.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133