全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

正态分布区间灰数灰色预测模型

DOI: 10.13195/j.kzyjc.2014.0822, PP. 1711-1716

Keywords: 灰色系统理论,区间灰数,正态分布,信息转换,随机模拟

Full-Text   Cite this paper   Add to My Lib

Abstract:

近期灰数预测主要关注无分布信息和均匀分布区间灰数预测.基于灰朦胧集演化思想,研究在不确定信息广泛存在的正态分布背景下,正态分布区间灰数序列的灰色预测问题.首先,通过正态分布随机函数实现区间灰数序列与实数序列族的信息等效转换;然后,对正态分布区间灰数随机白化序列进行GM(1,1)建模,利用最大值最小值及正态分布“3??法则”建立区间灰数预测模型;最后,通过实例对比分析验证了所提出模型的可行性和有效性,为区间灰数预测问题提供新的思路和方法.

References

[1]  肖新平, 毛树华. 灰预测与决策方法[M]. 北京: 科学出版社, 2013: 3-11.
[2]  (Xiao X P, Mao S H. Grey forecasting and decision methods[M]. Beijing: Science Press, 2013: 3-11.)
[3]  Liu S F, Forrest J, Yang Y J. A brief introduction to grey systems theory[J]. Grey Systems: Theory and Application, 2012, 2(2): 89-104.
[4]  方志耕, 刘思峰, 陆芳, 等. 区间灰数表征与算法改进及其GM(1,1) 模型应用研究[J]. 中国工程科学, 2005, 7(2): 57-61.
[5]  (Fang Z G, Liu S F, Lu F, et al. Study on improvement of token and arithmetic of interval grey numbers and its GM(1,1) model[J]. Engineering Science, 2005, 7(2): 57-61.)
[6]  Zeng B, Liu S F, Xie N M. Prediction model of interval grey number based on DGM(1,1)[J]. J of Systems Engineering and Electronics, 2010, 21(4): 598-603.
[7]  曾波. 基于核和灰度的区间灰数预测模型[J]. 系统工程与电子技术, 2011, 33(4): 111-114.
[8]  (Zeng B. Prediction model of interval grey number based on kernel and degree of greyness[J]. Systems Engineering and Electronics, 2011, 33(4): 111-114.)
[9]  刘思峰, 方志耕, 谢乃明. 基于核和灰度的区间灰数运算法则[J]. 系统工程与电子技术, 2010, 32(2): 313-316.
[10]  (Liu S F, Fang Z G, Xie N M. Algorithm rules of interval grey numbers based on the “kernel” and the degree of greyness of grey numbers[J]. Systems Engineering and Electronics, 2010, 32(2): 313-316.)
[11]  袁潮清, 刘思峰, 张可. 基于发展趋势和认知程度的区间灰数预测[J]. 控制与决策, 2011, 26(2): 313-315.
[12]  (Yuan C Q, Liu S F, Zhang K. Prediction model for interval grey number based on trend and cognition[J]. Control and Decision, 2011, 26(2): 313-315.)
[13]  吴利丰, 刘思峰, 闫书丽. 区间灰数序列的灰色预测模型构建方法[J]. 控制与决策, 2013, 28(12): 1912-1915.
[14]  (Wu L F, Liu S F, Yan S L. Grey prediction model for hybrid sequence[J]. Control and Decision, 2013, 28(12): 1912-1915.)
[15]  杨德岭, 刘思峰, 曾波. 基于核和信息域的区间灰数Verhulst 模型[J]. 控制与决策, 2013, 28(2): 264-268.
[16]  (Yang D L, Liu S F, Zeng B. Verhulst model of interval grey number based on kernel and information field[J]. Control and Decision, 2013, 28(2): 264-268.)
[17]  刘解放, 刘思峰, 方志耕. 基于核与灰半径的连续区间灰数预测模型[J]. 系统工程, 2013, 31(2): 61-64.
[18]  (Liu J F, Liu S F, Fang Z G. Prediction model of continuous interval grey number based on the kernel and gray radius[J]. Systems Engineering, 2013, 31(2): 61-64.)
[19]  王大鹏, 汪秉文, 李睿凡. 考虑合成灰数灰度性质的改进区间灰数预测模型[J]. 系统工程与电子技术, 2013, 35(5): 1013-1017.
[20]  (Wang D P, Wang B W, Li R F. Improved prediction model of interval grey number based on the characteristics of grey degree of compound grey number [J]. Systems Engineering and Electronics, 2013, 35(5): 1013-1017.)
[21]  郭晓君, 刘思峰, 方志耕. 基于合成灰数灰度的区间灰数自忆性预测模型[J]. 系统工程与电子技术, 2014, 36(5): 76-81.
[22]  (Guo X J, Liu S F, Fang Z G. Self-memory prediction model of interval grey number based on grey degree of compound grey number[J]. Systems Engineering and Electronics, 2014, 36(5): 76-81.)
[23]  邓聚龙. 灰理论基础[M]. 武汉: 华中科技大学出版社, 2002: 40-46.
[24]  (Deng J L. The foundation of grey system [M]. Wuhan: Huazhong University of Science and Technology Press, 2002: 40-46.)
[25]  曾波, 刘思峰, 崔杰. 白化权函数已知的区间灰数预测模型[J]. 控制与决策, 2010, 25(12): 1815-1819.
[26]  (Zeng B, Liu S F, Cui J. Prediction model for interval grey number with known weight function[J]. Control and Decision, 2010, 25(12): 1815-1819.)
[27]  Tsaur R C. The development of an interval grey regression model for limited time series forecasting[J]. Expert Systems with Applications, 2010, 37(2): 1200-1206.
[28]  谢乃明, 刘思峰. 考虑概率分布的灰数排序方法[J]. 系统工程理论与实践, 2009, 29(4): 169-175.
[29]  (Xie N M, Liu S F. On comparing grey numbers with their probability distributions[J]. Systems Engineering-Theory & Practice, 2009, 29(4): 169-175.)
[30]  Zhang K. Random simulation method for accuracy test of grey prediction model[J]. Grey Systems: Theory and Application, 2013, 3(1): 26-34.
[31]  寇进忠. 随机性方法与灰色性方法的互补问题[J]. 系统辩证学学报, 1998, 6(2): 81-83.
[32]  (Kou J Z. Complementarity problem of random method and gray method[J]. J of Systemic Dialectics, 1998, 6(2): 81-83.)
[33]  曾波, 刘思峰. 一种基于区间灰数几何特征的灰数预测模型[J]. 系统工程学报, 2011, 26(2): 174-180.
[34]  (Zeng B, Liu S F. Prediction model of interval grey number based on its geometrical characteristics[J]. J of Systems Engineering, 2011, 26(2): 174-180.)
[35]  孟伟, 刘思峰, 曾波. 区间灰数的标准化及其预测模型的构建与应用研究[J]. 控制与决策, 2012, 27(5): 773-776.
[36]  (Meng W, Liu S F, Zeng B. Standardization of interval grey number and research on its prediction modeling and application[J]. Control and Decision, 2012, 27(5): 773-776.)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133