全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于联合模板稀疏表示的目标跟踪方法

DOI: 10.13195/j.kzyjc.2014.1175, PP. 1696-1700

Keywords: 目标跟踪,联合模板,联合目标函数,稀疏表示

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对传统基于稀疏表示的目标跟踪方法中,当场景中含有与目标相似的背景时容易出现跟踪漂移的问题,提出一种新的目标跟踪方法.该方法基于目标的局部二元模式特征,将目标外观模型同时用原始目标模板与当前帧部分粒子构成的联合模板稀疏表示,构建一个联合目标函数,将跟踪问题通过迭代转化为求解最优化问题.实验结果表明,所提出跟踪方法在解决遮挡、光照等问题的同时,对场景中含有与目标相似背景的序列具有较好的跟踪效果.

References

[1]  Yilmaz A, Javad O, Shah M. Object tracking: A survey[J]. ACM Computer Survey, 2006, 38(4): 1-45.
[2]  Adam A, Rivlin E, Shimshoni I. Robust fragments-based tracking using the integral histogram[C]. Porc of IEEE Conf on Computer Vision and Pattern Recognition. New York, 2006: 798-805.
[3]  杨欣, 费树岷, 李刚, 等. 基于复杂特征融合的改进mean shift 目标跟踪[J]. 控制与决策, 2014, 29(7): 1297-1300.
[4]  (Yang X, Fei S M, Li G, et al. Improved mean shift tracking algorithm based on complicated feature fusion[J]. Control and Decision, 2014, 29(7): 1297-1300.)
[5]  Ross D, Lim J, Lin R S, et al. Incremental learning for robust visual tracking[J]. Int J of Computer Vis, 2008, 77(1/2/3): 125-141.
[6]  Wang D, Lu H C, Chen Y W. Incremental MPCA for color object tracking[C]. Int Conf on Pattern Recognition. Istanbul, 2010: 1751-1754.
[7]  HuWM, Li X, Zhang X, et al. Incremental tensor subspace learning and its applications to foreground segmentation and tracking[J]. Int J of Computer Vision, 2011, 91(3): 303-327.
[8]  Kwon J, Lee K M. Visual tracking decomposition[C]. Porc of IEEE Conf on Computer Vision and Pattern Recognition. San Francisco, 2010: 1269-1276.
[9]  Mei X, Ling H B. Robust visual tracking using ??1 minimization[C]. Porc of IEEE Conf on Computer Vision. Kyoto, 2009: 1436-1443.
[10]  Babenko B, Yang M H, Belongie S. Visual tracking with online multiple instance learning[C]. Porc of IEEE Conf on Computer Vision and Pattern Recognition. Anchorage, 2009: 983-990.
[11]  徐建军, 张蓉, 毕笃彦, 等. 一种新的AdaBoost 视频跟踪算法[J]. 控制与决策, 2012, 27(5): 681-685.
[12]  (Xu J J, Zhang R, Bi D Y, et al. A new AdaBoost video tracking algorithm[J]. Control and Decision, 2012, 27(5): 681-685.)
[13]  Avidan S. Support vector tracking[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(8): 1064-1072.
[14]  Fu K, Gong C, Qiao Y, et al. One-class support vector machine-assisted robust tracking[J]. J of Electronic Imaging, 2013, 22(2): 023002.
[15]  Zhang K H, Zhang L, Yang M S. Real-time compressive tracking[C]. Porc of IEEE Conf on Eurpean Computer Vision. Florence, 2012: 866-879.
[16]  罗会兰, 钟宝康, 孔繁胜. 结合目标预测位置的压缩跟踪[J]. 中国图象图形学报, 2014, 19(6): 857-885.
[17]  (Luo H L, Zhong B K, Kong F S. Object tracking algorithm by combining the predicted target position with compressive tracking[J]. J of Image and Graphics, 2014, 19(6): 857-885.)
[18]  Zhang S P, Yao H X, Sun X, et al. Robust object tracking based on sparse representation[C]. Proc of SPIE Int Conf on Visual Communications and Images Processing. Huangshan, 2010: 77441N-1-8.
[19]  Zhang S P, Yao H X, Zhou H Y, et al. Robust visual tracking based on online learning sparse representation[J]. Neurocomputing, 2013(100): 31-40.
[20]  Liu B Y, Yang L, Huang J Z. Robust and fast collaborative tracking with two stage sparse optimization[C]. Porc of IEEE Conf on Eurpean Computer Vision. Heraklion, 2010: 624-637.
[21]  潘晴, 曾仲杰. 基于稀疏表示和特征选择的LK 目标跟踪[J]. 计算机应用研究, 2014, 31(2): 623-628.
[22]  (Pan Q, Zeng Z J. LK tracking based on sparse representation and features selection[J]. Application Research of Computers, 2014, 31(2): 623-628.)
[23]  Tibshirani R. Regression shrinkage and selection via the lasso[J]. J of the Royal Statistical Society, 1996: 267-288.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133