Chatzis S P, Varvarigou T A. A fuzzy clustering approach toward hidden markov random field models for enhanced spatially constrained image segmentation[J]. IEEE Trans on Fuzzy System, 2008, 16(5): 1351-1361.
[2]
Miyamoto S, Mukaidono M. Fuzzy ??-means as a regularization and maximum entropy approach[C]. Proc of 7th Int Fuzzy System Associate World Congrress. Prague, 1997: 86-92.
[3]
Bezdek J. Pattern recognition with fuzzy objective function algorithms[M]. New York: Plenum, 1981: 15-39.
[4]
Szilagyi L, Benyo Z, Szilagyi S, et al. MR brain image segmentation using an enhanced fuzzy ??-means algorithm[C]. Proc of 25th Annual Int Conf of the IEEE Medicine and Biology Society. Cancun, 2003: 17-21.
[5]
Congalton R G, Green K. Assessing the accuracy of remotely sensed data: Principles and practices[M]. Boca Raton: CRC Press, 2008: 105-119.
[6]
Benediktsson J A, Chanussot J, Moon W M. Very high-resolution remote sensing: Challenges and opportunities[J]. Proc of the IEEE, 2012, 100(6): 1907-1910.
[7]
Bruzzone L, Carlin L. A multilevel context-based system for classification of very high spatial resolution images[J]. IEEE Trans on Geoscience and Remote Sensing, 2006, 44(9): 2587-2600.
[8]
Pham D L. Spatial models for fuzzy clustering[J]. Computer Vision and Image Understand, 2001, 84(2): 285-297.
[9]
Zedeh L. Fuzzy sets[J]. Information Control, 1965, 8(3): 338-353.
(He Z H, Lei Y J. Research on intuitionistic fuzzy ??-means clustering algorithm[J]. Control and Decision, 2011, 26(6): 847-850.)
[14]
Cai W, Chen S, Zhang D. Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation[J]. Pattern Recognition, 2007, 40(3): 825-838.