全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

寻求“理想”解的改进多目标粒子群优化算法

DOI: 10.13195/j.kzyjc.2014.0991, PP. 1653-1659

Keywords: 多目标优化,粒子群优化,TOPSIS,策略,变异策略,??,邻近距离

Full-Text   Cite this paper   Add to My Lib

Abstract:

如何在众多非劣解中为决策者推荐一个合理的方案是使用多目标粒子群算法(MOPSO)所面临的问题.为此,将逼近理想解的排序方法(TOPSIS策略)引入到算法中.为了提高求解精度和均匀性,还提出了基于Pbest的变异策略和改进的??邻近距离策略.测试结论显示,仅使用TOPSIS策略确定Gbest的算法,求解精度虽好,但均匀性较差,而包含所有改进策略的算法在精度和均匀性方面都更优,并且能够按照TOPSIS方法在非劣解集中找到一个适合向决策者推荐的“理想”方案.

References

[1]  Baumgartner U, Magele C, Renhart W. Pareto optimality and particle swarm optimization[J]. IEEE Trans on Magnetics, 2004, 40(2): 1172-1175.
[2]  Hu X, Eberhart R. Multi objective optimization using dynamic neighborhood particle swarm optimization[C]. Proc of the 2002 World on Congress on Computational Intelligence. Piscataway: IEEE Press, 2002: 1677-1681.
[3]  Alvarez-Benitez J E, Everson R M, Fieldsend J E. A MOPSO algorithm based exclusively on Pareto dominance concepts[J]. Lecture Notes in Computer Science, 2005, 3410: 459-473.
[4]  Coello-Coello C A, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization[J]. IEEE Trans on Evolutionary Computation, 2004, 8(3): 256-279.
[5]  Knowles J D, Corne D W. Approximating the nondominated front using the Pareto archived evolution strategy[J]. Evolutionary Computation, 2000, 8(2): 149-172.
[6]  Moslemi H, Zandieh M. Comparisons of some improving strategies on MOPSO for multi-objective (??,??) inventory system [J]. Expert Systems with Applications, 2011, 38(10): 12051-12057
[7]  胡广浩, 毛志忠, 何大阔. 基于两阶段领导的多目标粒子群优化算法[J]. 控制与决策, 2010, 25(3): 404-410.
[8]  (Hu G H, Mao Z Z, He D K. Multi-objective PSO optimization algorithm based on two stages-guided[J]. Control and Decision, 2010, 25(3): 404-410.)
[9]  吴亚丽, 徐丽青. 基于差分演化的改进多目标粒子群优化算法[J]. 系统仿真学报, 2011, 23(10): 2211-2215.
[10]  (Wu Y L, Xu L Q. Improved multi-objective particle swarm optimization based on differential evolution[J]. J of System Simulation, 2011, 23(10): 2211-2215.)
[11]  Ching-Shih Tsou. Multi-objective inventory planning using MOPSO and TOPSIS[J]. Expert Systems with Applications, 2008, 35(1/2): 136-142.
[12]  Eberhart R C, Kennedy J. A new optimizer using particle swarm theory[C]. The 6th Int Symposium on Micro Machine and Human Science. Nagoya: IEEE, 1995: 39-43.
[13]  Shi Y, Eberhart R C. A modified particle swarm optimize[C]. The IEEE Int Conf on Evolutionary Computation. Piscataway: IEEE Press, 1998: 69-73.
[14]  Deb K, Mohan M, Mishra S. Evaluating the ??-Domination based multi-objective evolutionary algorithm for a quick computation of pareto-optimal solutions[J]. Evolutionary Computation, 2005, 13(4): 501-525.
[15]  Zitzler E, Deb K, Thiele L. Comparison of multi objective evolutionary algorithms: Empirical results[J]. Evolutionary Computation, 2000, 8(2): 173-195.
[16]  Deb K. Multi-objective genetic algorithms: Problem difficulties and construction of test problems[J]. Evolutionary Computation, 1999, 7(3): 205-230.
[17]  Kursawe Frank. A variant of evolution strategies for vector optimization[C]. Parallel Problem Solving from Nature. Berlin: Springer-Verlag, 1991: 193-197.
[18]  Van Veldhuizen D A, Lamont G B. Multi objective evolutionary algorithm research: A history and analysis[R]. Ohio: Air Force Institute of Technology, 1998.
[19]  Schott J. Fault tolerant design using single and multi criteria genetic algorithm optimization[D]. Cambridge: Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 1995: 76-77.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133