Baumgartner U, Magele C, Renhart W. Pareto optimality and particle swarm optimization[J]. IEEE Trans on Magnetics, 2004, 40(2): 1172-1175.
[2]
Hu X, Eberhart R. Multi objective optimization using dynamic neighborhood particle swarm optimization[C]. Proc of the 2002 World on Congress on Computational Intelligence. Piscataway: IEEE Press, 2002: 1677-1681.
[3]
Alvarez-Benitez J E, Everson R M, Fieldsend J E. A MOPSO algorithm based exclusively on Pareto dominance concepts[J]. Lecture Notes in Computer Science, 2005, 3410: 459-473.
[4]
Coello-Coello C A, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization[J]. IEEE Trans on Evolutionary Computation, 2004, 8(3): 256-279.
[5]
Knowles J D, Corne D W. Approximating the nondominated front using the Pareto archived evolution strategy[J]. Evolutionary Computation, 2000, 8(2): 149-172.
[6]
Moslemi H, Zandieh M. Comparisons of some improving strategies on MOPSO for multi-objective (??,??) inventory system [J]. Expert Systems with Applications, 2011, 38(10): 12051-12057
(Wu Y L, Xu L Q. Improved multi-objective particle swarm optimization based on differential evolution[J]. J of System Simulation, 2011, 23(10): 2211-2215.)
[11]
Ching-Shih Tsou. Multi-objective inventory planning using MOPSO and TOPSIS[J]. Expert Systems with Applications, 2008, 35(1/2): 136-142.
[12]
Eberhart R C, Kennedy J. A new optimizer using particle swarm theory[C]. The 6th Int Symposium on Micro Machine and Human Science. Nagoya: IEEE, 1995: 39-43.
[13]
Shi Y, Eberhart R C. A modified particle swarm optimize[C]. The IEEE Int Conf on Evolutionary Computation. Piscataway: IEEE Press, 1998: 69-73.
[14]
Deb K, Mohan M, Mishra S. Evaluating the ??-Domination based multi-objective evolutionary algorithm for a quick computation of pareto-optimal solutions[J]. Evolutionary Computation, 2005, 13(4): 501-525.
[15]
Zitzler E, Deb K, Thiele L. Comparison of multi objective evolutionary algorithms: Empirical results[J]. Evolutionary Computation, 2000, 8(2): 173-195.
[16]
Deb K. Multi-objective genetic algorithms: Problem difficulties and construction of test problems[J]. Evolutionary Computation, 1999, 7(3): 205-230.
[17]
Kursawe Frank. A variant of evolution strategies for vector optimization[C]. Parallel Problem Solving from Nature. Berlin: Springer-Verlag, 1991: 193-197.
[18]
Van Veldhuizen D A, Lamont G B. Multi objective evolutionary algorithm research: A history and analysis[R]. Ohio: Air Force Institute of Technology, 1998.
[19]
Schott J. Fault tolerant design using single and multi criteria genetic algorithm optimization[D]. Cambridge: Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 1995: 76-77.