全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于后悔理论的多目标灰靶决策方法

DOI: 10.13195/j.kzyjc.2014.1038, PP. 1635-1640

Keywords: 后悔理论,灰靶决策,区间灰数,正负靶心,综合靶心距

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对属性值为区间灰数、权重信息不确定的多目标决策问题,考虑决策者的心理行为,提出一种基于后悔理论的多目标灰靶决策方法.首先构造基于正负理想点的欣喜-后悔值函数,建立正负靶心,同时考虑方案与正负理想方案的接近性,利用正负靶心距的空间投影距离构造一种新的靶心距函数,并构建非线性优化模型来确定目标权重,最终确定出方案的排序.最后以城市应急实例验证了所提出方法的有效性和可行性.

References

[1]  邓聚龙. 灰预测与决策[M]. 武汉: 华中科技大学出版社, 2002: 56-61.
[2]  (Deng J L. Grey prediction and grey decision[M]. Wuhan: Press of Huazhong University of Science & Technology, 2002: 56-61.)
[3]  Liu S F. Grey information: Theory and practical applications[M]. London: Springer, 2006: 89-92.
[4]  党耀国, 刘思峰, 刘斌. 基于区间数的多指标灰靶决策模型的研究[J]. 中国工程科学, 2005, 7(4): 31-35.
[5]  (Dang Y G, Liu S F, Liu B. Study on the multi-attribute decision model of grey target based on interval number[J]. Engineering Science, 2005, 7(4): 31-35.)
[6]  陈勇明, 谢海英. 邓氏灰靶变换的不相容问题的统计 模拟检验[J]. 系统工程与电子技术, 2007, 29(4): 1285-1287.
[7]  (Chen Y M, Xie H Y. Test of the in consistency problem on Deng’s grey transformation by simulation[J]. Systems Engineering and Electronics, 2007, 29(4): 1285-1287.)
[8]  王正新, 党耀国, 杨虎. 改进的多目标灰靶决策方法[J]. 系统工程与电子技术, 2009, 31(7): 2634-2636.
[9]  (Wang Z X, Dang Y G, Yang H. Improvements on decision method of grey target[J]. System Engineering and Electronics, 2009, 31(7): 2634-2636.)
[10]  宋捷, 党耀国, 王正新. 基于强“奖优罚劣”算子的多指标灰靶决策模型[J]. 系统工程与电子技术, 2010, 32(6): 1229-1233.
[11]  (Song J, Dang Y G, Wang Z X. Multi-attribute decision model of grey target based on majorant operator of“rewarding good and punishing bad”[J]. System Engineering and Electronics, 2010, 32(6): 1229-1233.)
[12]  刘思峰, 袁文峰, 盛克勤. 一种新型多目标智能加权灰靶决策模型[J]. 控制与决策, 2010, 25(8): 1159-1163.
[13]  (Liu S F, Yuan W F, Sheng K Q. Multi-attribute intelligent grey target decision model[J]. Control and Decision, 2010, 25(8): 1159-1163.)
[14]  宋捷, 党耀国, 王正新. 正负靶心灰靶决策模型[J]. 系统工程理论与实践, 2010, 30(10): 1822-1826.
[15]  (Song J, Dang Y G, Wang Z X. New decision model of grey target with both the positive clout and the negative clout[J]. Systems Engineering-Theory & Practice, 2010, 30(10): 1822-1827.)
[16]  Krohling R A, de Souza T T M. Combining prospect theory and fuzzy numbers to multi-criteria decision making[J]. Expert Systems with Applications, 2012, 39(13): 11487-11493.
[17]  罗党. 基于正负靶心的多目标灰靶决策模型[J]. 控制与决策, 2013, 28(2): 241-246.
[18]  (Luo D. Multi-objective grey target decision model based on positive and negative clouts[J]. Control and Decision, 2013, 28(2): 241-246.)
[19]  Kahneman D, Tversky A. Prospect theory: An analysis of decision under risk[J]. Econometric, 1979, 47(2): 263-291.
[20]  Tversky A, Kahneman D. Advances in prospect theory: Cumulative representation of uncertainty[J]. J of Risk and Uncertainty, 1992, 5(4): 297-323.
[21]  王坚强, 孙腾, 陈晓红. 基于前景理论的信息不完全的模糊多准则决策方法[J]. 控制与决策, 2009, 24(8): 1198-1202.
[22]  (Wang J Q, Sun T, Chen X H. Multi-criteria fuzzy decision making method based on prospect theory with incomplete information[J]. Control and Decision, 2009, 24(8): 1198-1202.)
[23]  刘勇, Forrest Jeffrey, 刘思峰, 等. 基于前景理论的多目标灰靶决策方法[J]. 控制与决策, 2013, 28(3): 345-350.
[24]  (Liu Y, Forrest Jeffrey, Liu S F, et al. Multi-objective grey target decision-making based on prospect theory[J]. Control and Decision, 2013, 28(3): 345-350.)
[25]  闫书丽, 刘思峰. 基于前景理论的群体灰靶决策方法[J].控制与决策, 2014, 29(4): 673-678.
[26]  (Yan S L, Liu S F. Group grey target decision making based on prospect theory[J]. Control and Decision, 2014, 29(4): 673-678.)
[27]  Bell D E. Regret in decision making under uncertainty[J]. Operations Research, 1982, 30(5): 961-981.
[28]  Loomes G,Sugden R.Regret theory: An alternative theory of rational choice under uncertainty[J]. The Economic J, 1982, 92(368): 805-824.
[29]  Laciana C E, Weber E U. Correcting expected utility for comparisons between alternative outcomes: A unified parameterization of regret and disappointment[J]. J of Risk and Uncertainty, 2008, 36(1): 1-17.
[30]  Chorus C G. Regret theory based route choices and traffic equilibria[J]. Transportmetrica, 2010, 8: 291-305.
[31]  刘思峰, 方志耕, 谢乃明. 基于核和灰度的区间灰数运算法则[J]. 系统工程与电子技术, 2010, 32(2): 313-316.
[32]  (Liu S F, Fang Z G, Xie N M. Algorithm rules ofinterval grey numbers based on the“kernel”and thedegree of greyness of numbers[J]. Systems Engineering and Electronic, 2010, 32(2): 313-316.)
[33]  闫书丽, 刘思峰, 方志耕, 等. 基于累积前景理论的动态风险灰靶决策方法[J]. 控制与决策, 2013, 28(11): 1655-1660.
[34]  (Yan S L, Liu S F, Fang Z G, et al. Dynamic risk grey target decision making method based on cumulative prospect theory[J]. Control and Decision, 2013, 28(11): 1655-1660.)
[35]  张歧山, 郭喜江, 邓聚龙. 灰关联熵分析方法[J]. 系统工程理论与实践, 1996, 18(8): 7-11.
[36]  (Zhang Q S, Guo X J, Deng J L. Grey relation entropy method of grey relation analysis[J]. Systems Engineering-Theory & Practice, 1996, 16(8): 7-11.)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133