全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

求解TSP问题的离散狼群算法

DOI: 10.13195/j.kzyjc.2014.1055, PP. 1861-1867

Keywords: 进化计算,群体智能,离散狼群算法,组合优化,旅行商问题

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过定义反转算子,对人工狼位置和智能行为重新进行整数编码设计,并结合概率近邻初始化方法,提出一种求解旅行商问题的离散狼群算法.该算法保留了狼群算法基于职责分工的协作式搜索特性,并较好地平衡了算法的广度开拓和深度开采能力.采用C-TSP问题和TSPLIB数据库中的多组TSP问题作为实验用算例,并将所提出算法与其他5种智能优化算法进行对比,仿真结果表明,所提出算法在求解准确率、稳定性和所需迭代次数等方面具有相对优势.

References

[1]  高海昌, 冯博琴, 朱利. 智能优化算法求解TSP问题[J]. 控制与决策, 2006, 21(3): 241-247.
[2]  (Gao H C, Feng B Q, Zhu L. Reviews of the meta-heuristic algorithms for TSP[J]. Control and Decision, 2006, 21(3): 241-247.)
[3]  梁雅俊, 肖明清, 梁鹏, 等. 基于灰色局势决策模型的ATS资源选择与配置[J]. 空军工程大学学报: 自然科学版, 2015, 16(5): 77-80.
[4]  ?(Liang Y J, Xiao M Q, Liang P, et al. Test resource selection and configuration of automatics test system based on grey situation decision-making model[J]. J of Air Force Engineering University: Natural Science Edition, 2015, 16(5): 77-80.)
[5]  Merz P, Freisleben B. Genetic local search for the TSP: New results[C]. Proc of the 1997 IEEE Int Conf on Evolutionary Computation. Indianapolis: IEEE Press, 1997: 159-164.
[6]  Wang K P, Huang L, Zhou C G, et al. Particle swarm optimization for traveling salesman problem[C]. Proc of the Int Conf on Machine Learning and Cybernetics. Xi'an: IEEE Press, 2003: 1583-1585.
[7]  Dorigo M, Luca M G. Ant colonies for the traveling salesman problem[J]. BioSystems, 1997, 43(2): 73-81.
[8]  胡中华, 赵敏. 基于人工蜂群算法的TSP仿真[J]. 北京理工大学学报, 2009, 29(11): 978-982.
[9]  (Hu Z H, Zhao M. Simulation on traveling salesman problem(TSP) based on artificial bees colony algorithm[J]. Trans of Beijing Institute of Technology, 2009, 29(11): 978-982.)
[10]  周永权, 黄正新. 求解TSP的人工萤火虫群优化算法[J]. 控制与决策, 2012, 27(12): 1816-1821.
[11]  (Zhou Y Q, Huang Z X. Artificial glowworm swarm optimization algorithm for TSP[J]. Control and Decision, 2012, 27(12): 1816-1821.)
[12]  Mo H W, Xu L F. Biogeography migration algorithm for traveling salesman problem[J]. Int J of Intelligent Computing and Cybernetics, 2011, 4(3): 311-330.
[13]  Yousefikhoshbakht M, Sedighpour M. New imperialist competitive algorithm to solve the travelling salesman problem[J]. Int J of Computer Mathematics, 2013, 90(7): 1495-1550.
[14]  冯翔, 马美怡, 虞慧群. TSP 湖水能量优化算法[J]. 计算机研究与发展, 2013, 50(9): 2015-2027.
[15]  (Feng X, Ma M Y, Yu H Q. Lake-energy optimization algorithm for traveling salesman problem[J]. J of Computer Research and Development, 2013, 50(9): 2015-2027.)
[16]  Dowlatshahi M B, Nezamabadi H, Mashinchia M. A discrete gravitational search algorithm for solving combinatorial optimization problems[J]. Information Sciences, 2014, 258(10): 94-107.
[17]  吴虎胜, 张凤鸣, 吴庐山. 一种新的群体智能算法—–狼群算法[J]. 系统工程与电子技术, 2013, 35(11): 3430-3438.
[18]  (Wu H S, Zhang F M, Wu L S. New swarm intelligence algorithm—wolf pack algorithm[J]. Systems Engineering and Electronics, 2013, 35(11): 3430-3438.)
[19]  吴虎胜, 张凤鸣, 战仁军, 等. 求解0-1 背包问题的二进制狼群算法[J]. 系统工程与电子技术, 2014, 36(8): 1660-1667.
[20]  (Wu H S, Zhang F M, Zhan R J, et al. A binary wolf pack algorithm for solving 0-1 knapsack problem[J]. Systems Engineering and Electronics, 2014, 36(8): 1660-1667.)
[21]  Vlachos M, Kollios G, Gunopulos G. Discovering Similar Multidimensional Trajectories[C]. Proc of the 18th Int Conf on Data Engineering. San Jose: IEEE Press, 2002: 673-684.
[22]  王宇平, 李英华. 求解TSP 的量子遗传算法[J]. 计算机学报, 2007, 30(5): 748-755.
[23]  (Wang Y P, Li Y H. A novel quantum genetic algorithm for TSP[J]. Chinese J of Computers, 2007, 30(5): 748-755.)
[24]  顾大权, 刘高飞, 袁珏, 等. 基于点线回路优化求解 TSP 的一个新算法[J]. 解放军理工大学学报: 自然科学版, 2010, 11(4): 423-427.
[25]  (Gu D Q, Liu G F, Yuan Y, et al. New algorithm for solving TSP based on dots and lines loop optimizing[J]. J of PLA University of Science and Technology: Natural Science Edition, 2010, 11(4): 423-427.)
[26]  柳寅, 马良. 模糊人工蜂群算法的旅行商问题求解[J]. 计算机应用研究, 2013, 30(9): 2694-2696.
[27]  (Liu Y, Ma L. Fuzzy artificial bees colony algorithm for solving traveling salesman problem [J]. Application Research of Computers, 2013, 30(9): 2694-2696.)
[28]  胡中华, 赵敏. 基于人工蜂群算法的TSP 仿真[J]. 北京理工大学学报, 2009, 29(11): 978-982.
[29]  (Hu Z H, Zhao M. Simulation on traveling salesman problem(TSP) based on artificial bees colony algorithm[J]. Trans on Beijing Institute of Technology, 2009, 29(11): 978-982.)
[30]  罗中良, 易明珠, 刘小勇. 最优化问题的蚁群混合差分进化算法研究[J]. 中山大学学报: 自然科学版, 2008, 47(3): 33-36.
[31]  (Luo Z L, Yi M Z, Liu X Y. On ant colony hybrid differential evolution for optimization problem[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni: Natural Science Edition, 2008, 47(3): 33-36.)
[32]  David B. Simulated annealing for traveling salesman problem[R]. Springfield: Spring, 1997.
[33]  Bayram H. A new simulated annealing approach for Traveling salesman problem[J]. Mathematical and Computational Applications, 2013, 18(3): 313-322.
[34]  丁海利, 王芳, 高成修. 旅行商问题的交叉粒子群优化算法[J]. 数学杂志, 2008, 28(1): 85-89.
[35]  (Ding H L, Wang F, Gao C X. Crossover particle swarm optimization for traveling salesman problem[J]. J of Mathematics, 2008, 28(1): 85-89.)
[36]  Hong K, Shi J H, Tzong W K, et al. A hybrid swarm intelligence algorithm for the traveling salesman problem[J]. Expert Systems, 2010, 27(3): 166-179.
[37]  Dong G F, Guo W W, Tichkle K. Solving the traveling salesman problem using cooperative genetic ant systems[J]. Expert Systems with Applications, 2012, 35(9): 5006-5011.
[38]  Chen S M, Chien C Y. Solving the traveling salesman problem based on the genetic simulated annealing ant colony system with particle swarm optimization techniques[J]. Expert Systems with Applications, 2011, 38(12): 14439-14450.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133