全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于直接估计法的NGM(1,1)模型拓展

DOI: 10.13195/j.kzyjc.2014.1195, PP. 1841-1846

Keywords: 灰色系统,灰色预测模型,直接估计法,近似非齐次指数增长序列

Full-Text   Cite this paper   Add to My Lib

Abstract:

从近似非齐次指数序列的GM(1,1)模型时间响应函数出发,推导累加序列间的函数递推关系,并给出求解时间响应函数参数值的直接估计方法.在此基础上,构建一种能同时模拟近似齐次和近似非齐次指数序列的新NGM(1,1)模型,该模型避免了模型参数估计从差分方程到微分方程的跳跃性误差,并从理论上解释了新模型能模拟齐次指数序列和非齐次指数序列的原因.通过对新NGM(1,1)模型与既有模型进行比较,表明了所提出模型具有更优良的模拟和预测性能.

References

[1]  刘思峰, 党耀国, 方志耕, 等. 灰色系统理论及其应用[M]. 第5 版. 北京: 科学出版社, 2010: 3-4.
[2]  (Liu S F, Dang Y G, Fang Z G, et al. Gray system theories and its applications[M]. 5th ed. Beijing: Science Press, 2010: 3-4.)
[3]  王正新, 党耀国, 裴玲玲. 缓冲算子的光滑性[J]. 系统工程理论与实践, 2010, 30(9): 1643-1649.
[4]  (Wang Z X, Dang Y G, Pei L L. The smoothness of buffer operators[J]. Systems Engineering-Theory & Practice, 2010, 30(9): 1643-1649.)
[5]  戴文战, 苏永. 缓冲算子调节度与光滑度的关系[J]. 控制与决策, 2014, 29(1): 158-162.
[6]  (Dai W Z, Su Y. Relationship between regulation degree and smoothness of buffer operators[J]. Control and Decision, 2014, 29(1): 158-162.)
[7]  曾波, 刘思峰. 基于振幅压缩的随机振荡序列预测模型[J]. 系统工程理论与实践, 2012, 32(11): 2493-2497.
[8]  (Zeng B, Liu S F. Predietion model of stoehastic oseillation sequenee based on amplitude compression[J]. Systems Engineering-Theory & Practice, 2012, 32(11): 2493-2497.)
[9]  姚天祥, 刘思峰, 党耀国. 初始值优化的离散灰色预测模型[J]. 系统工程与电子技术, 2009, 31(10): 2394-2398.
[10]  (Yao T X, Liu S F, Dang Y G. Discrete grey prediction model based on optimized initial value[J]. Systems Engineering and Electronics, 2009, 31(10): 2394-2398.)
[11]  谢乃明, 刘思峰. 离散灰色模型的拓展及其最优化求解[J]. 系统工程理论与实践, 2006, 26(6): 108-112.
[12]  (Xie N M, Liu S F. Research on extension of discrete grey model and its optimize formula[J]. Systems Engineering-Theory & Practice, 2006, 26(6): 108-112.)
[13]  Dang Y G, Liu S F, Chen K J. The models that be taken as initial value[J]. Kybernetes, 2004, 33(2): 247-254.
[14]  Wang Y H, Dang Y G, Li Y Q, et al. An approach to increase prediction precise of GM(1,1) model based on optimization of the initial condition[J]. Expert Systems with Applications, 2010, 37(8): 5640-5644.
[15]  罗党, 刘思峰, 党耀国. 灰色模型GM(1,1) 优化[J]. 中国工程科学, 2003, 5(8): 50-53.
[16]  (Luo D, Liu S F, Dang Y G. Optimization of grey model GM(1,1)[J]. Engineering Science, 2003, 5(8): 50-53.)
[17]  谭冠军. GM(1,1) 模型的背景值构造方法和应用[J]. 系统工程理论与实践, 2000, 20(4): 98-103.
[18]  (Tan G J. The structure method and application of background value in grey system GM(1,1) model[J]. Systems Engineering-Theory & Practice, 2000, 20(4): 98-103.)
[19]  李玻, 魏勇. 优化灰导数后的新的GM(1,1)模型[J]. 系统工程理论与实践, 2009, 29(2): 100-104.
[20]  (Li B, Wei Y. Optimizes grey derivative of GM(1,1)[J]. Systems Engineering-Theory&Practice, 2009, 29(2): 100-104.)
[21]  王义闹, 李应川, 陈智洁. 逐步优化灰导数白化值的GM(1,1) 直接建模法[J]. 华中科技大学学报, 2001, 29(3): 54-57.
[22]  (Wang Y N, Li Y C, Chen Z J. A direct modeling method of GM(1,1) with a step by step optimum grey derivative’s whitening values[J]. J of Huazhong University of Science & Technology, 2001, 29(3): 54-57.)
[23]  陈芳, 魏勇. 近非齐次指数序列GM(1,1) 模型灰导数的优化[J]. 系统工程理论与实践, 2013, 33(11): 2876-2878.
[24]  (Chen F, Wei Y. Approximate non-homogeneous index sequence GM(1,1) model of grey derivative optimization[J]. Systems Engineering-Theory & Practice, 2013, 33(11): 2876-2878.)
[25]  谢乃明, 刘思峰. 离散GM(1,1) 模型与灰色预测模型建模机理[J]. 系统工程理论与实践, 2005, 25(1): 93-98.
[26]  (Xie N M, Liu S F. Discrete GM(1,1) and mechanism of grey forecasting model[J]. Systems Engineering-Theory & Practice, 2005, 25(1): 93-98.)
[27]  曾波, 刘思峰. 近似非齐次指数增长序列的间接DGM(1,1) 模型分析[J]. 统计与信息论坛, 2010, 25(8): 30-33.
[28]  (Zeng B, Liu S F. Analysis of indirect DGM(1,1) model non-homogeneous exponential incremental sequences[J]. Statistics & Information Forum, 2010, 25(8): 30-33.)
[29]  曾波, 刘思峰. 近似非齐次指数序列的DGM(1,1) 直接建模法[J]. 系统工程理论与实践, 2011, 31(2): 297-301.
[30]  (Zeng B, Liu S F. Direct modeling approach of DGM(1,1) with approximate non-homogerieous exponential sequence[J]. Systems Engineering-Theory & Practice, 2011, 31(2): 297-301.)
[31]  崔杰, 党耀国, 刘思峰. 一种新的灰色预测模型及其建模机理[J]. 控制与决策, 2009, 24(11): 1702-1706.
[32]  (Cui J, Dang Y G, Liu S F. Novel grey forecasting model and its modeling mechanism[J]. Control and Decision, 2009, 24(11): 1702-1706.)
[33]  崔兴凯, 路秀英. 基于NGM(1,1,??) 模型的农产品产量预测方法[J]. 微电子学与计算机, 2011, 28(8): 201-207.
[34]  (Cui X K, Lu X Y. Farm productivity prediction method using the NGM(1,1,??) model[J]. Microelectronics & Computer, 2011, 28(8): 201-207.)
[35]  战立青, 施化吉. 近似非齐次指数数据的灰色建模方法与模型[J]. 系统工程理论与实践, 2013, 33(3): 659-694.
[36]  (Zhan L Q, Shi H J. Methods and model of grey modeling for approximation non-homogenous exponential data[J]. Systems Engineering-Theory&Practice, 2013, 33(3): 659-694.)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133