全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

时变线性系统同时强镇定控制器设计

DOI: 10.13195/j.kzyjc.2014.1341, PP. 1890-1894

Keywords: 套代数,同时镇定,素分解,控制器,时变线性系统

Full-Text   Cite this paper   Add to My Lib

Abstract:

在套代数框架下,应用素分解的方法,设计能同时强镇定两个时变线性系统的稳定控制器,并给出了所有控制器的参数化.应用该控制器参数化,对某类同时鲁棒强镇定问题进行研究,给出了两个时变线性系统可被同时强鲁棒镇定的充分条件.针对所得的控制器设计结果给出了数值例子,数值结果表明了该设计是有效和可行的.

References

[1]  Saeks R, Murray J. Fractional representation algebraic geometry and the simultaneous stabilization problem[J]. IEEE Trans on Automatic Control, 1982, 27(4): 895-903. [2] Vidyasagar M, Viswanadham N. Algebraic design techniques for realiable stabilization[J]. IEEE Trans on Automatic Control, 1982, 27(5): 1085-1095. [3] Chosh B K. Transcendental and interpolation methods in simultaneous stabilization and simultaneous partial pole placement problems[J]. SIAM J of Control Optimization, 1986, 24(6): 1091-1109. [4] Hiroshi I, Rixat A, Satoru T. Doubly coprime representation of linear systems and its application to simultaneous stabilization[J]. IMA J of Mathematical Control and Information, 2003, 20(1): 21-35. [5] Blondel V. Simultaneous stabilization of linear systems[M]. Heidelberg: Springer-Verlag, 1994. [6] Blondel V, Campion G, Gevers M. A sufficient condition for simultaneous stabilization[J]. IEEE Trans on Automatic Control, 1993, 38(8): 1264-1266. [7] Blondel V, Gevers M, Mortini R. Simultaneous stabilization of three or more systems: Conditions on the real axis do not suffice[J]. SIAM J of Control Optimization, 1994, 32(2): 572-590. [8] Abdallah C, Dorato P, Bredemann M. New sufficient conditions for strong simultaneous stabilization[J]. Automatica, 1993, 33(6): 1193-1196. [9] Quadrat A. On a general structure of the stabilizing controllers based on stable range[J]. SIAM J of Control Optimization, 2004, 42(6): 2264-2285. [10] Savkin A V, Petersen I R. A method for simultaneous strong stabilization of linear time-varying systems[J]. Int J of Systems Science, 2000, 31(6): 685-689. [11] Lu Yufeng, Xu Xiaoping. Simultaneous stabilization for a family of plants[J]. J of Mathematical Research & Exposition, 2008, 28(3): 529-534. [12] Yu Tian Qiu. The transitivity in simultaneous stabilization[J]. Systems & Control Letters, 2011, 60(1): 1-6. [13] Yu Tian Qiu, Yan Han. Simultaneous controller design for time-varying linear systems[J]. Systems & Control Letters, 2011, 60(12): 1032-1037. [14] Dale W, Smith M. Stabilizability and existence of system representations for discrete-time time-varying systems[J]. SIAM J of Control Optimization, 1993, 31(6): 1538-1557. [15] Quadrat A. The fractional representation approach to synthesis problems: An algebraic analysis viewpoint, Part I: (Weakly) doubly coprime factorizations[J]. SIAM J of Control Optimization, 2003, 42(1): 266-299. [16] Quadrat A. The fractional representation approach to synthesis problems: An algebraic analysis viewpoint, Part II: Internal stabilization[J]. SIAM J of Control Optimization, 2003, 42(1): 300-320. [17] Feintuch A. Robust control theorey in hilbert space[M]. New York: Springer, 1998. [18] Lu Yufeng, Xu Xiaoping. The stabilization problem for discrete time-varying linear systems[J]. Systems & Control Letters, 2008, 57(11): 936-939. [19] Liu Liu, Lu Yufeng. Stability analysis for time-varyiny systems via quadratic constraints[J]. Systems & Control Letters, 2011, 60(10): 832-839. [20] Lu Yufeng, Gong Ting. On stabilization for discrete linear time-varying systems[J]. Systems & Control Letters, 2011, 60(12): 1024-1031. [21] 刘浏, 卢玉峰. 时变系统的模型匹配与跟踪问题[J]. 控制理论与应用, 2014, 31(3): 302-308. (Liu L, Lu Y F. Suboptimal model-matching and tracking problem of time-varying systems[J]. Control Theory & Applications, 2014, 31(3): 302-308.)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133