Lei D M. Simplified multi-objective genetic algorithms for stochastic job shop scheduling[J]. Applied Soft Computing, 2011, 11(8): 4991-4996.
[2]
Horng S C, Lin S Y. Multi-stage ordinal optimization based approach for job shop scheduling problems[J]. Applied Mathematics and Computation, 2012, 219(3): 1125-1134.
[3]
Horng S C, Lin S S, Yang F Y. Evolutionary algorithm for stochastic job shop scheduling with random processing time[J]. Expert Systems with Applications, 2012, 39(3): 3603-3610.
[4]
Gu J W, Gu X S, Gu M Z. A novel parallel quantum genetic algorithm for stochastic job shop scheduling[J]. J of Mathematical Analysis and Applications, 2009, 355(1): 63-81.
[5]
Gu J W, Gu M Z, Cao C W, et al. A novel competitive co-evolutionary quantum genetic algorithm for stochastic job shop scheduling problem[J]. Computers & Operations Research, 2010, 37(5): 927-937.
[6]
Larranage P, Lozano J A. Estimation of distribution algorithms: A new tool for evolutionary computation[M]. Boston: Kluwer Press, 2002: 57-64.
(Wang S Y, Wang L, Xu Y, et al. An estimation of distribution algorithm for solving hybrid flow-shop scheduling problem[J]. Acta Automatica Sinica, 2012, 38(3): 437-443.)
[9]
Jarboui B, Eddaly M, Siarry P. An estimation of distribution algorithm for minimizing the total flow time in permutation flow shop scheduling problems[J]. Computers & Operations Research, 2009, 36(9): 2638-2646.
[10]
Wang S, Wang L, Xu Y. An estimation of distribution algorithm for solving hybrid flow-shop scheduling problem with stochastic processing time[C]. The 32nd Control Conf(CCC). Xi’an: IEEE, 2013: 2456-2461.
(Wang S Y, Wang L, Fang C, et al. Advances in estimation of distribution algorithms[J]. Control and Decision, 2012, 27(7): 961-966.)
[13]
Pena J M, Rpbles V, Larranage P, et al. GA-EDA: Hybrid evolutionary algorithm using genetic and estimation of distribution algorithms[C]. Innovations in Applied Artificial Intelligence. Berlin: Springer, 2004: 361-371.
[14]
Liu H C, Gao L, Pan Q K. A hybrid particle swarm optimization with estimation of distribution algorithm for solving permutation flow shop scheduling problem[J]. Expert Systems with Applications, 2011, 38(4): 4348-4360.
[15]
Pandolfi D, Villagra A, Leguizamon G. Hybrid estimation of distribution algorithms for the flow shop scheduling problem[C]. IEEE Congress on Evolutionary Computation(CEC). Mexico: IEEE, 2013: 1694-1701.
(Zhou Y L, Wang J H, Huang C. Estimation of distribution-discrete particle swarm optimization algorithm for permutation-based problems[J]. Acta Electronica Sinica, 2014, 42(3): 561-571.)
(Yang H A, Sun Q F, Li J Y. Novel decoding method for job shop earliness and tardiness scheduling problem[J]. Computer Integrated Manufacturing Systems, 2011, 17(2): 2652-2659.)
[20]
Graham R, Lawler E, Lenstra J, et al. Optimization and approximation in deterministic sequencing and scheduling: A survey[J]. Annals of Discrete Mathematics, 1979, 5: 287-326.
[21]
Wang S Y, Wang L, Liu M, et al. An effective estimation of distribution algorithm for solving the distributed permutation flow-shop scheduling problem[J]. Int J of Production Economics, 2013, 145(1): 387-396.
[22]
Chen C H, Lee L H. Stochastic simulation optimization: An optimal computing budget allocation[M]. New Jersey: World Scientific, 2010: 15-28.
[23]
Horng S C, Yang F Y, Lin S S. Embedding evolutionary strategy in ordinal optimization for hard optimization problems[J]. Applied Mathematical Modelling, 2012, 36(8): 37-53.
[24]
Yang H A, Lv Y Y, Xia C K, et al. Optimal computing budget allocation for ordinal optimization in solving stochastic job shop scheduling problems[Z]. Mathematical Problems in Engineering, 2014.