全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于自相关函数的模糊时间序列优化算法

DOI: 10.13195/j.kzyjc.2014.0878, PP. 1797-1802

Keywords: 模糊时间序列,自相关函数,规则权重,特征展开法

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对模糊时间序列模型中模糊推理规则的优化问题,提出一种时间序列的自相关理论与模糊时间序列相结合的算法.首先考查数据平稳化;然后运用传统的数据模糊化方法得到模糊集,进而建立模糊规则,并运用自相关函数理论对模糊规则进行优化;最后通过对Alabama大学注册人数的预测验证了所提出算法的有效性.

References

[1]  Song Q, Chrisom B S. Fuzzy time series and its models[J]. Fuzzy Sets and Systems, 1993, 54(1): 269-277.
[2]  Song Q, Chrisom B S. Forecasting enrollments with fuzzy time series-Part I[J]. Fuzzy Sets and Systems, 1993, 54(1): 1-10.
[3]  Song Q, Chissom B S. Forecasting enrollments with fuzzy time series-Part II[J]. Fuzzy Sets and Systems, 1994, 62(1): 1-8.
[4]  Chen S M. Forecasting enrollments based on fuzzy time-series[J]. Fuzzy Sets and Systems, 1996, 81(3): 311-319.
[5]  Chen S M, Hwang J R. Temperature prediction using fuzzy time series[J]. IEEE Trans on Systems, 2000, 30(2): 263-275.
[6]  Chen S M. Forecasting enrollments based on high-order fuzzy time series[J]. Cybernetics and Systems, 2002, 33(1): 1-16.
[7]  Teoh H J, Chen T L, Cheng C H, et al. A hybrid multi-order fuzzy time series for forecasting stock markets[J]. Expert Systems with Applications, 2009, 36(4): 7888-7897.
[8]  Yu H K. Weighted fuzzy time series model for TAIEX forecasting[J]. Physica A: Statistical Mechanics and its Applications, 2005, 349(3): 609-624.
[9]  Cheng C H, Chen T L, Chiang C H. Trend-weighted fuzzy time series model for TAIEX forecasting[J]. Lecture Notes in Computer Science, 2006, 4232(III): 469-477.
[10]  Liu JW, Chen T L, Cheng C H, et al. Adaptive-expectation based multi attribute FTS model for forecasting TAIEX[J]. Original Research Article Computers & Mathematics with Applications, 2010, 59(2): 795-802.
[11]  Cheng H C, Chen T L, Teoh H J, et al. Fuzzy time-series based on adaptive expectation model for TAIEX forecasting[J]. Expert Systems with Application, 2008, 34(2): 1126-1132.
[12]  Lee M I I, Efendi R, Ismail Z. Modified weighted for enrollment forecasting based on fuzzy time series[J]. Matematlka, 2009, 25(1): 67-78.
[13]  Qiu W R, Liu X D, Wang L D. Forecasting in time series based on generalized fuzzy logical relationship[J]. Int J of Research and Surveys, 2010, 4(5): 1431-1437.
[14]  Chen Y Y, Chen T Y. The characteristic expansion approximate reasoning method[J]. J of Liaoning Normal University, 1984, 5(3): 1-7.
[15]  George E P Box, Gwilym M Jenkins, Gregory C Reinsel.?Time series analysis, forecasting and control[J]. IEEE Trans on Automatic Control, 1972, 17(2): 281-283.
[16]  Lee H S, Chou M T. Fuzzy forecasting based on fuzzy time series[J]. Int J of Computer Mathmatic, 2004, 81(7): 781-789.
[17]  Singh S R. A simple method of forecasting based on fuzzy time series[J]. Original Research Article Applied Mathematics Computation, 2007, 186(1): 330-339.
[18]  Aladag C H, Yolcu U, Egrioglu E, et al. A new time invariant fuzzy time series forecasting method based on particle swarm optimization[J]. Original Research Article Applied Soft Computing, 2012, 12(10): 3291-3299.
[19]  Vedide Rezan Uslu, Eren Bas, Ufuk Yolcu, et al. A fuzzy time series approach based on weights determined by the number of recurrences of fuzzy relations[J]. Original Research Article Swarm and Evolutionary Computation, 2014, 15: 19-26.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133