全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于乘法偏好关系的群一致性偏差熵多属性群决策方法研究

DOI: 10.13195/j.kzyjc.2012.1611, PP. 257-262

Keywords: 乘法偏好关系,群一致性偏差熵,偏差熵模型,多属性群决策

Full-Text   Cite this paper   Add to My Lib

Abstract:

在多属性群决策中,针对每一个属性下决策者都有一个关于决策方案的乘法偏好关系的决策问题,提出一种基于乘法偏好关系的群一致性偏差熵多属性群决策方法.此方法考虑到不同属性下的决策者具有不同的权重,并通过迭代运算可以达到群一致性水平,从而得出最终的不同属性下决策者的权重;同时,可以利用偏差熵模型来求解属性权重,利用这两个权重最终获得一个综合各方意见的群一致性乘法偏好关系.最后通过算例分析验证了所提出方法的有效性.

References

[1]  陈晓红, 阳熹. 一种基于三角模糊数的多属性群决策方法[J]. 系统工程与电子技术, 2008,30(2):278-282.
[2]  (Chen X H, Yang X. Multiple attributive group decision making method based on triangular fuzzy numbers[J]. Systems Engineering and Electonics, 2008, 30(2): 278-282.)
[3]  Chuu S J. Group decision-making model using fuzzy multiple attributes analysis for the evaluation of advanced manufacturing technology[J]. Fuzzy Sets and Systems, 2009, 160(5): 586-602.
[4]  Herrera F, Herrera-Viedma E, Chiclana F. Multiperson decision-making based on multiplicative preference relations[J]. European J of Operational Research, 2001, 129(2): 372-385.
[5]  徐泽水, 赵华. 偏好信息为模糊互反判断矩阵的模糊多属性决策法[J]. 模糊系统与数学, 2004, 18(4): 115-121.
[6]  (Xu Z S, Zhao H. A method for fuzzy multi-attribute decision making with preference information in the form of fuzzy reciprocal judgement matrix[J]. Fuzzy Systems and Mathematics, 2004, 18(4): 115-121.)
[7]  Fan Z P, Ma J, Jiang Y P. A goal programming approach to group decision making based on multiplicative preference relations and fuzzy preference relations[J]. European J of Operational Research, 2006, 174(1): 311-321.
[8]  Wang Y M, Fan Z P, Hua Z S. A chi-square method for obtaining a priority vector from multiplicative and fuzzy preference relations[J]. European J of Operational Research, 2007, 182(1): 356-366.
[9]  Li D F, Wang Y C, Liu S, et al. Fractional programming methodology for multi-attribute group decision-making using IFS[J]. Applied Soft Computing, 2009, 9(1): 219-225.
[10]  曾三云, 龙君, 朱长城. 带有方案偏好关系的模糊多属性决策方法[J]. 模糊系统与数学, 2008, 22(1): 132-137.
[11]  (Zeng S Y, Long J, Zhu C C. Fuzzy multiple attribute decision making method with preference relation on alternatives[J]. Fuzzy Systems and Mathematics, 2008, 22(1): 132-137.)
[12]  Chen S M, Niou S J. Fuzzy multiple attributes group decision-making based on fuzzy preference relations[J]. Expert Systems with Applications, 2011, 38(4): 3865-3872.
[13]  Wu Z B, Xu J P. A consistency and consensus based decision support model for group decision making with multiplicative preference relations[J]. Decision Support Systems, 2012, 52(3): 757-767.
[14]  Xu Z S, Cai X Q. Group consensus algorithms based on preference relations[J]. Information Sciences, 2011, 181(1): 150-162.
[15]  Xu J P, Wu Z B. A discrete consensus support model for multiple attribute group decision making[J]. Knowledge-Based Systems, 2011, 24(8): 1196-1202.
[16]  Xu Z S. An automatic approach to reaching consensus in multiple attribute group decision making[J]. Computers & Industrial Engineering, 2009, 56(4): 1369-1374.
[17]  Wu Z B, Xu J P. A concise consensus support model for group decision making with reciprocal preference relations based on deviation measures[J]. Fuzzy Sets and Systems,
[18]  2012, 206: 58-73.
[19]  Fu C, Yang S L. An evidential reasoning based consensus model for multiple attribute group decision analysis problems with interval-valued group consensus requirements[J]. European J of Operational Research, 2012, 223(1): 167-176.
[20]  田军, 张朋柱, 王刊良, 等. 基于德尔菲法的专家意见集成模型研究[J]. 系统工程理论与实践, 2004, 24(1): 57-62.
[21]  (Tian J, Zhang P Z, Wang K L. The integrating model of expert’s opinion based on Delphi method[J]. Systems Engineering-Theory & Practice, 2004, 24(1): 57-62.)
[22]  徐泽水, 顾红芳. 混合判断矩阵的两种排序方法[J]. 系统工程与电子技术, 2002, 24(5): 1-3.
[23]  (Xu Z S, Gu H F. Two methods for priorities of hybrid judgement matrix[J]. Systems Engineering and Electonics, 2002, 24(5): 1-3.)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133