全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类离散混沌系统的脉冲时滞反馈控制

DOI: 10.13195/j.kzyjc.2013.0610, PP. 1527-1531

Keywords: 脉冲时滞反馈控制,分岔,混沌,小世界网络

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了镇定一类离散混沌系统的不稳定周期轨道,提出脉冲时滞反馈控制方法.系统地研究了脉冲时滞反馈控制方法在一类离散小世界网络模型中的应用问题.数值仿真结果表明,小世界网络模型中的倍周期分岔及其导致的混沌可以被延后,镶嵌在混沌吸引子内部的不稳定周期轨道可以被镇定.与已有相关控制方法相比,所提出的脉冲时滞反馈控制方法具有适用范围广泛、实现过程简单方便且灵活等优势.

References

[1]  Pyragas K. Continuous control of chaos by self controlling feedback[J]. Physics Letters A, 1992, 170(6): 421-428.
[2]  Ushio T. Limitation of delayed feedback control in nonlinear discrete-time systems[J]. IEEE Trans on Circuits and Systems: Fundamental Theory and Applications, 1996, 43(9): 815-816.
[3]  陈亮, 韩正之. 时滞反馈控制的局限性及其改进[J]. 控制与决策, 2004, 19(6): 621-625.
[4]  (Chen L, Han Z Z. Limitation of the delayed feedback control and its modification[J]. Control and Decision, 2004, 19(6): 621-625.)
[5]  Morgu¨l O¨ . On the stability of delayed feedback controllers[J]. Physics Letters A, 2003, 314(4): 278-285.
[6]  Lehnert J, H¨ovel P, Flunkert V, et al. Adaptive tuning of feedback gain in time-delayed feedback control[J]. Chaos, 2011, 21(4): 043111.
[7]  Flunkert V, Sch¨oll E. Towards easier realization of timedelayed feedback control of odd-number orbits[J]. Physical Review E, 2011, 84(1): 016214.
[8]  Le L B, Konishi K, Hara N. Design and experimental verification of multiple delay feedback control for timedelay nonlinear oscillators[J]. Nonlinear Dynamics, 2012, 67(2): 1407-1418.
[9]  Morgu¨l O¨ . Stabilization of unstable periodic orbits for discrete time chaotic systems by using periodic feedback[J]. Int J of Bifurcation and Chaos, 2006, 16(2): 311-323.
[10]  刘小河. 非线性系统分析与控制引论[M]. 北京: 清华大学出版社, 2007: 125-139.
[11]  (Liu X H. Analysis and control of nonlinear system introduction[M]. Beijing: Tsinghua University Press, 2007: 125-139.)
[12]  Liu X L, Xiao D M. Complex dynamic behaviors of a discrete-time predator-prey system[J]. Chaos, Solitons and Fractals, 2007, 32(1): 80-94.
[13]  Watts D J, Strogatz S H. Collective dynamics of smallworld networks[J]. Nature, 1998, 393(6684): 440-442.
[14]  Yang X S. Chaos in small-world networks[J]. Physical Review E, 2001, 63(4): 046206.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133