全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于个人偏好的多目标优化问题目标权重计算方法

DOI: 10.13195/j.kzyjc.2013.0655, PP. 1471-1476

Keywords: 个人偏好,多目标优化,约束优化,方差

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对多目标优化过程中如何根据个人偏好确定各目标权重的问题,提出一种约束优化方法以获得各目标的最佳权重.首先,将目标权重计算问题转化为综合适应度最大方差计算问题;然后,将个人偏好转化为最大方差问题不等式约束条件;最后,利用遗传算法和梯度投影法求解约束优化问题以获得最佳的目标权重.在电力机车故障维修策略决策过程中应用该算法计算各部件经济性、安全性等目标权重,实验结果验证了所提出方法能够获得满足个人偏好的最佳目标权重.

References

[1]  Coello C A. Evolutionary multi-objective optimization: A historical view of the field[J]. IEEE Computational Intelligence Magazine, 2006, 1(1): 28-36.
[2]  Kaliszewski I, Miroforidis J, Podkopaev D. Interactive multiple criteria decision making based on preference driven evolutionary multiobjective optimization with controllable accuracy[J]. European J of Operational Research, 2012, 216(1): 188-199.
[3]  邱飞岳, 吴裕市, 邱启仓, 等. 基于双极偏好占优的高维目标进化算法[J]. 软件学报, 2013, 24(3): 476-489.
[4]  (Qiu F Y, Wu Y S, Qiu Q C, et al. Many-objective evolutionary algorithm based on bipolar preferences dominance[J]. J of Software, 2013, 24(3): 476-489.)
[5]  Rachmawati L, Srinivasan D. Multiobjective evolutionary algorithm with controllable focus on the knees of the pareto front[J]. IEEE Trans on Evolutionary Computation, 2009, 13(4): 810-824.
[6]  麦雄发, 李玲. 基于决策者偏好区域的多目标粒子群算法研究[J]. 计算机应用研究, 2010, 27(4): 1301-1303.
[7]  (Mai X F, Li L. Multiobjective particle swarm optimization algorithm based on dms perference region[J]. Application Reasearch of Computers, 2010, 27(4): 1301-1303.)
[8]  Jong Hwan K, Ji Hyeong H, Ye Hoon K. Preference-based solution selection algorithm for evolutionary multiobjective optimization[J]. IEEE Trans on Evolutionary Computation, 2012, 16(1): 20-34.
[9]  Si Jung R, Ki Baek L, Jong Hwan K. Improved version of a multiobjective quantum-inspired evolutionary algorithm with preference-based selection[C]. 2012 IEEE Congress on Evolutionary Computation(CEC). New Jersey, 2012: 1-7.
[10]  Ki Baek L, Jong Hwan K. Multi-objective particle swarm optimization with preference-based sorting[C]. 2011 IEEE Congress on Evolutionary Computation(CEC). New Jersey, 2011: 2506-2513.
[11]  余进, 何正友, 钱清泉. 基于偏好信息的多目标微粒群优化算法研究[J]. 控制与决策, 2009, 24(1): 66-70.
[12]  (Yu J, He Z Y, Qian Q Q. Study on multiobjective particle swarm optimization algorithm based on preference[J]. Control and Decision, 2009, 24(1): 66-70.)
[13]  杨咚咚, 焦李成, 公茂果, 等. 求解偏好多目标优化的克隆选择算法[J]. 软件学报, 2010, 21(1): 14-33.
[14]  (Yang D D, Jiao L C, Gong M G, et al. Clone selection algorithm to solve preference multi-objective optimization[J]. J of Software, 2010, 21(1): 14-33.)
[15]  申晓宁, 李涛, 张敏. 一种基于模糊逻辑引入偏好信息的多目标遗传算法[J]. 南京理工大学学报, 2011, 35(2): 245-251.
[16]  (Shen X N, Li T, Zhang M. Multi-bjective optimization genetic algorithm incorporating preference information based on fuzzy logic[J]. J of Nanjing University of Science and Technology, 2011, 35(2): 245-251.)
[17]  王军民, 谭跃进. 基于模糊偏好的多目标成像卫星调度方法研究[J]. 计算机工程与应用, 2008, 44(11): 26-30.
[18]  (Wang J M, Tan Y J. Research on multi-objective imaging satellites scheduling techniques based on fuzzy preferences[J]. Computer Engineering and Applications, 2008, 44(11): 26-30.)
[19]  乐琦, 樊治平. 基于悲观度的双边匹配决策问题研究[J]. 管理科学, 2012, 25(2): 112-120.
[20]  (Yue Q, Fan Z P. Research on two-sided matching decision problems based on pessimism degree[J]. J of Management Science, 2012, 25(2): 112-120.)
[21]  乐琦, 樊治平. 具有不确定偏好序信息的双边匹配决策问题研究[J]. 运筹与管理, 2012, 21(1): 57-63.
[22]  (Yue Q, Fan Z P. Study on two-sided matching decision-making problems with uncertain preference ordinal information[J]. Operations Research and Management Science, 2012, 21(1): 57-63.)
[23]  张华军, 赵金, 王瑞. 最大化个人偏好的多目标优化进化算法[J]. 信息与控制, 2010, 39(2): 212-217.
[24]  (Zhang H J, Zhao J, Wang R. The evolutionary multi-objective optimization algorithm with maximization of personal preference[J]. Information and Control, 2010, 39(2): 212-217.)
[25]  陈宝林. 最优化理论与算法[M]. 第2版. 北京: 清华大学出版社, 2005: 10-17.
[26]  (Chen B L. Optimization theory and algorithms[M]. 2nd ed. Beijing: Tsinghua University Press, 2005: 10-17.)
[27]  马昌凤. 最优化方法及其Matlab 程序设计[M]. 北京: 科学出版社, 2009: 166-174.
[28]  (Ma C F. Optimization method and matlab programming [M]. Beijing: Science Press, 2009: 166-174.)
[29]  Loris I, Bertero M, De Mol C, et al. Accelerating gradient projection methods for ?1 constrained signal recovery by steplength selection rules[J]. Applied and Computational Harmonic Analysis, 2009, 27(2): 247-254.
[30]  解可新. 最优化方法[M]. 天津: 天津大学出版社, 1998: 166-182.
[31]  (Xie K X. Optimization method[M]. Tianjin: Tianjin University Press, 1998: 166-182.)
[32]  陈绍宽. 铁路牵引供电系统维修计划优化模型与算法[D]. 北京: 北京交通大学交通运输学院, 2007: 67-101.
[33]  (Chen S K. Models and algorithms on optimum maintenance scheduling of railway power systems[D]. Beijing: School of Traffic and Transportation, Beijing Jiaotong University, 2007: 67-101.)
[34]  Conn A R, Gould N I M, Toint P L. A globally convergent augmented lagrangian barrier algorithm for optimization with general inequality constraints and simple bounds[J]. Mathematics of Computation, 1997, 66(217): 261-288.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133