全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

灰色GM(1,1,tα)模型与自忆性原理的耦合及应用

DOI: 10.13195/j.kzyjc.2013.0707, PP. 1447-1452

Keywords: GM(1,1,t,α),模型,自忆性原理,GM(1,1,t,2),自忆性模型,软土地基沉降

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对实际工程应用中传统GM(1,1)模型预测的局限性,以含时间幂次项的灰色GM(1,1,tα)模型为基础,构建了灰色GM(1,1,tα)与自忆性原理的耦合预测模型;用动力系统自忆性原理来克服传统灰色模型对初值比较敏感的弱点;将灰色GM(1,1,t2)自忆性模型应用于某沿海高速软土地基沉降的模拟和预测,获得了满意的模拟和预测精度.实验算例表明,所提出的新模型显著地改善了传统灰色预测模型的模拟预测精度.

References

[1]  Liu S F, Lin Y. Grey systems theory and applications[M]. Berlin: Springer-Verlag, 2010: 169-190.
[2]  崔杰, 刘思峰, 曾波, 等. 灰色Verhulst 预测模型的数乘特性[J]. 控制与决策, 2013, 28(4): 605-608.
[3]  (Cui J, Liu S F, Zeng B, et al. Parameters characteristics of grey Verhulst prediction model under multiple transformation[J]. Control and Decision, 2013, 28(4): 605-608.)
[4]  张斌, 西桂权. 基于背景值和边值修正的GM(1,1) 模型优化[J]. 系统工程理论与实践, 2013, 33(3): 682-688.
[5]  (Zhang B, Xi G Q. GM(1,1) model optimization based on the background value and boundary value correction[J]. Systems Engineering-Theory & Practice, 2013, 33(3): 682-688.)
[6]  Dang Y G, Liu S F. The GM models that x(n) be taken as initial value[J]. The Int J of Systems & Cyberntics, 2004, 33(2): 247-254.
[7]  Xie N M, Liu S F, Yang Y J, et al. On novel grey forecasting model based on non-homogeneous index sequence[J]. Applied Mathematical Modelling, 2013, 37(7): 5059-5068.
[8]  Wu L F, Liu S F, Yao L G, et al. Grey system model with the fractional order accumulation[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(7): 1775-1785.
[9]  王正新, 党耀国, 赵洁珏. 优化的GM(1,1) 幂模型及其应用[J]. 系统工程理论与实践, 2012, 32(9): 1973-1978.
[10]  (Wang Z X, Dang Y G, Zhao J J. Optimized GM(1,1) power model and its application[J]. Systems Engineering-Theory & Practice, 2012, 32(9): 1973-1978.)
[11]  王正新. 振荡型GM(1,1) 幂模型及其应用[J]. 控制与决策, 2013, 28(10): 1459-1472.
[12]  (Wang Z X. Oscillating GM(1,1) power model and its application[J]. Control and Decision, 2013, 28(10): 1459-1472.)
[13]  钱吴永, 党耀国, 刘思峰. 含时间幂次项的灰色GM(1,1,tα) 模型及其应用[J]. 系统工程理论与实践, 2012, 32(10): 2247-2252.
[14]  (Qian W Y, Dang Y G, Liu S F. Grey GM(1,1,tα) model with time power and its application[J]. Systems Engineering-Theory & Practice, 2012, 32(10): 2247-2252.)
[15]  曹鸿兴. 大气运动的自忆性方程[J]. 中国科学(B辑), 1993, 23(1): 104-112.
[16]  (Cao H X. Self-memory equation for atmosphere motion[J]. Science in China (Series B): Chemistry, 1993, 23(1): 104-112.)
[17]  Phienwej N, Thepparak S, Giao P H. Prediction of differential settlement of buildings induced by land subsidence from deep well pumping[J]. Geotechnical Engineering, 2005, 36(1): 69-75.
[18]  陆君安, 吕金虎, 夏军. 对流扩散方程的自忆积分格式[J]. 计算物理, 2000, 17(6): 664-670.
[19]  (Lu J A, Lv J H, Xia J. Self-memory integration scheme of convection-diffusion equation[J]. Chinese J of Computational Physics, 2000, 17(6): 664-670.)
[20]  王威, 苏经宇, 侯本伟, 等. 建筑物非线性变形动态预 测的数据机理: 自记忆模型[J]. 科学通报, 2012, 57(23): 2171-2176.
[21]  (Wang W, Su J Y, Hou B W, et al. Dynamic prediction of building subsidence deformation with data-based mechanistic self-memory model[J]. Chinese Science Bulletin, 2012, 57(23): 2171-2176.)
[22]  范习辉, 张焰. 灰色自记忆模型及应用[J]. 系统工程理论与实践, 2003, 23(8): 114-129.
[23]  (Fan X H, Zhang Y. A novel self-memory grey model[J]. Systems Engineering-Theory & Practice, 2003, 23(8): 114-129.)
[24]  段海妮, 沈冰, 莫淑红. 灰色GM(1,N) 自记忆神经网络组合预测模型研究[J]. 水资源与水工程学报, 2010,
[25]  21(5): 93-95.
[26]  (Duan H N, Shen B, Mo S H. Study on combined predictable model of Gray GM(1,N) self-memory and neural network[J]. J of Water Resources & Water Engineering, 2010, 21(5): 93-95.)
[27]  袁喆, 杨志勇, 史晓亮, 等. 灰色微分动态自记忆模型在径流模拟及预测中的应用[J]. 水利学报, 2013, 44(7): 791-799.
[28]  (Yuan Z, Yang Z Y, Shi X L, et al. Differential hydrological grey self-memory model for runoff simulation and prediction[J]. J of Hydraulic Engineering, 2013, 44(7): 791-799.)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133