全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

多目标资源优化分配问题的Memetic算法

DOI: 10.13195/j.kzyjc.2013.0245, PP. 809-814

Keywords: 资源分配问题,Memetic,算法,遗传算法,模拟退火

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对传统算法求解多目标资源优化分配问题收敛慢、Pareto解不能有效分布在Pareto前沿面的问题,提出一种新的Memetic算法.在遗传算法的交叉算子中引入模拟退火算法,加强了遗传算法的局部搜索能力,加快了收敛速度.为了使Pareto最优解均匀分布在Pareto前沿面,在染色体编码中引入禁忌表,增加了种群的多样性,避免了传统遗传算法后期Pareto解集过于集中的缺点.通过与已有的遗传算法、蚁群算法、粒子群算法进行比较,仿真实验表明了所提出算法的有效性,并分析了禁忌表长度和模拟退火参数对算法收敛性的影响.

References

[1]  Hou Y C, Chang Y H. A new efficient encoding mode of genetic algorithms for the generalized plant allocation problem[J]. J of Information Science and Engineering, 2004, 20(5): 1019-1034.
[2]  Dai Y S, Xie M, Poh K L. Optimal testing-resource allocation with genetic algorithm for modular software systems[J]. J of Systems and Software, 2003, 66(1): 47-55.
[3]  Balasubramanian A, Levine B, Venkataramani A. DTN routing as a resource allocation problem[J]. ACM Sigcomm Computer Communication Review, 2007, 37(4): 373-384.
[4]  Osman M S, Abo-Sinna M A, Mousa A A. An effective genetic algorithm approach to multi-objective resource allocation problems[J]. Applied Mathematics and Computation, 2005, 163(2): 755-768.
[5]  Lin C M, Gen M. Multiobjective resource allocation problem by multistage decision-based hybrid genetic algorithm[J]. Applied Mathematics and Computation, 2007, 187(2): 574-583.
[6]  Chang Y H, Hou Y C. Dynamic programming decision path encoding of genetic algorithms for production allocation problems[J]. Computers & Industrial Engineering, 2008, 54(1): 53-65.
[7]  Chaharsooghi S K, Meimand Kermani A H. An effective ant colony optimization algorithm(ACO) for multi-objective resource allocation problem(MORAP)[J]. Applied Mathematics and Computation, 2008, 200(1): 167-177.
[8]  Gong Y, Zhang J, Chung H, et al. An efficient resource allocation scheme using particle swarm optimization[J]. IEEE Trans on Evolutionary Computation, 2012, 16(6): 801-816.
[9]  Yin P Y,Wang J Y. A particle swarm optimization approach to the nonlinear resource allocation problem[J]. Applied Mathematics and Computation, 2006, 183(1): 232-242.
[10]  Barkat Ullah A S S M, Sarker R, Lokan C. Handling equality constraints with agent-based memetic algorithms[J]. Memetic Computing, 2011, 3(1): 51-72.
[11]  Zitzler E, Deb K, Thiele L. Comparison of multiobjective evolutionary algorithms: Empirical results[J]. Evolutionary Computation, 2000, 8(2): 173-195.
[12]  Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Trans on Evolutionary Computation, 2002, 6(2): 182-197.
[13]  Ting C K, Ko C F, Huang C H. Selecting survivors in genetic algorithm using tabu search strategies[J]. Memetic Computing, 2009, 1(3): 191-203.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133