Bian Z Q, Zhang X G. Pattern recognition[M]. Beijing: Tsinghua University, 2001.
[2]
Jolliffe I T. Principal component analysis[M]. New York: Springer-Verlag, 1986.
[3]
Todorov, Valentin, Filzmoser, et al. Comparing classical and robust sparse PCA[C]. Advances in Intelligent Systems and Computing. Germany: Springer Verlag, 2013: 1283- 291.
[4]
Wan Minghua, Lai Zhihui, Jin Zhong. Feature extraction using two-dimensional local graph embedding based on maximum margin criterion[J]. Applied Mathematics and Computation, 2011, 217(23): 9659-9668.
[5]
Vanpanik V. Statistical learning theory[M]. NewYork: Wiley, 1998.
[6]
Benabdeslem, Khalid, Hindawi, et al. Constrained Laplacian score for semi-supervised feature selection[C]. Lecture Notes in Computer Science. Germany: Springer Verlag, 2011: 204-218.
[7]
Lou Songjiang, Zhang Guoyin, Pan Haiwei, et al. Supervised Laplacian discriminant analysis for small sample size problem with its application to face recognition[J]. Computer Research and Development, 2012, 49(8): 1730-1737.
[8]
Wong W K, Zhao H T. Supervised optimal locality preserving projection[J]. Pattern Recognition, 2012, 45(1): 186-197.
[9]
Atkeson Christopher G, Moore Andrew W, Schaal Stefan. Locally weighted learning[J]. Artificial Intelligence Review, 1997, 11(1/2/3/4/5): 75-113.
[10]
Blake C L, Merz C J. UCI rrepository of machine learning databases[EB/OL]. 1998. http://www.ics.uci.edu/mlearn/MLRepository.html.
[11]
Li Rong-Hua, Liang Shuang, Baciu George, et al. Equivalence between LDA/QR and direct LDA[J]. Int J of Cognitive Informatics and Natural Intelligence, 2011, 5(1): 94-112.
[12]
Dhir Chandra Shekhar, Lee Soo-Young. Discriminant independent component analysis[J]. IEEE Trans on Neural Networks, 2011, 22(6): 845-857.
[13]
Deng Weihong, Liu Yebin, Hu Jiani, et al. The small sample size problem of ICA: A comparative study and analysis[J]. Pattern Recognition, 2012, 45(12): 4438-4450.
[14]
Yang Li-Ping, Gu Xiao-Hua, Ye Hong-Wei. Sample locality preserving discriminant analysis for classification[J]. Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2011, 19(9): 2205-2213.
Kumar Nitin, Jaiswal Ajay, Agrawal R K. Performance evaluation of subspace methods to tackle small sample size problem in face recognition[C]. ACM Int Conf on Proc Series. United States: Association for Computing Machinery, 2012: 938-944.
[17]
Shu Xin, Gao Yao, Lu Hongtao. Efficient linear discriminant analysis with locality preserving for face recognition[J]. Pattern Recognition, 2012, 45(5): 1892- 1898.
[18]
Yang Wankou, Sun Changyin, Du Helen S, et al. Feature
[19]
extraction using laplacian maximum margin criterion[J]. Neural Processing Letters, 2011, 33(1): 99-110.
[20]
Cui Yan, Fan Liya. Feature extraction using fuzzy maximum margin criterion[J]. Neurocomputing, 2012, 86(1): 52-58.