全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

广义直觉模糊加权交叉影响平均算子及其在多属性决策中的应用

DOI: 10.13195/j.kzyjc.2013.0601, PP. 1250-1256

Keywords: 直觉模糊集,广义加权交叉影响平均算子,稳定性,多属性决策

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对不同直觉模糊集的隶属度与非隶属度可能存在交叉影响,提出广义直觉模糊加权交叉影响平均(GIFWIA)算子,推导出其数学表达式,研究该算子的性质,并探讨了基于GIFWIA算子的多属性决策方法.通过实例表明了所提出广义算子在决策应用中的有效性,并分析了不同参数lambda对决策的影响.通过灵敏度和相关比较分析,解释了交叉影响对决策结果的影响,表明了所提出广义算子的稳定性.

References

[1]  Kai H G, Wen L L. Combination rule of D-S evidence theory based on the strategy of cross merging between evidenees[J]. Expert Systems with Applications, 2011, 38(10): 13360-13366.
[2]  Harsanyi J C. Cardinal welfare, individualistic ethics and interpersonal comparisons of utility[J]. J of Political Economy, 1955, 63(4): 309-321.
[3]  Yager R R. On ordered weighted averaging aggregation operators in multi-criteria decision making[J]. IEEE Trans on Systems, Man and Cybernetics, 1988, 18(1): 183-190.
[4]  Xu Z S, Da Q L. The ordered weighted geometric averaging operators[J]. Int J of Intelligent System, 2002, 17(7): 709-716.
[5]  Zadeh L A. Fuzzy sets[J]. Information and Control, 1965, 8(3): 338-353.
[6]  Yang X H, Yang Z F, Shen Z Y, et al. A multi-objective decision-making ideal interval method for comprehensive assessment on water resource renewability[J]. Science in China, 2004, 47(S): 42-49.
[7]  He Y D, Chen H Y, Zhou L G, et al. Intuitionistic fuzzy geometric interaction averaging operators and their application to multi-criteria decision making[J]. Information Sciences, 2014, 259(2):142-159.
[8]  何迎东, 陈华友, 周礼刚. 基于隶属度与非隶属度交叉影响的直觉模糊集运算法则及其应用[J]. 模糊系统与数学, 2013, 27(3): 134-142.
[9]  (He Y D, Chen H Y, Zhou L G. Operational laws for the intuitionistic fuzzy sets and their application based on interaction between membership function and non-membership function[J]. Fuzzy Systems and Mathematics, 2013, 27(3): 134-142.)
[10]  何迎东, 邹委员, 陈华友, 等. 基于交叉影响的IFWGA 算子及其在多属性决策中的应用[J]. 数学的实践与认识, 2013, 43(6): 55-61.
[11]  (He Y D, Zou W Y, Chen H Y, et al. The intuitionistic fuzzy weighted geometric aggregation(IFWGA) operator based on interactions and its application to the multiple attributes decision making[J]. J of Mathematics in Practice and Theory, 2013, 43(6): 55-61.)
[12]  Xu Z S, Yager R R. Some geometric aggregation operators based on intuitionistic fuzzy sets[J]. Int J of General Systems, 2006, 35(4): 417-433.
[13]  Xu Z S. Intuitionistic fuzzy aggregation operators[J]. IEEE Trans on Fuzzy Systems, 2007, 15(6): 1179-1187.
[14]  Zhao H, Xu Z S, Ni M F, et al. Generalized aggregation operators for intuitionistic fuzzy sets[J]. Int J of Intelligent Systems, 2010, 25(1): 1-30.
[15]  Zhou L G, Chen H Y. Continuous generalized OWA operator and its application to decision making[J]. Fuzzy Sets and Systems, 2011, 168(1): 18-34.
[16]  Zhou L G, Chen H Y, Liu J P. Generalized power aggregation operators and their applications in group decision making[J]. Computers & Industrial Engineering, 2012, 62(4): 989-999.
[17]  Chen S M, Tan J M. Handling multi-criteria fuzzy decision-making problems based on vague set theory[J]. Fuzzy Setsand Systems, 1994, 67(2): 163-172.
[18]  Bustince H, Burillo P. Vague sets are intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1996, 79(3): 403-405.
[19]  Li D F. Multi-attribute decision making models and methods using intuitionistic fuzzy sets[J]. J of Computer and System Sciences, 2005, 70(1): 73-85.
[20]  Xu Z S, Yager R R. Some geometric aggregation operators based on intuitionistic fuzzy sets[J]. Int J of General Systems, 2006, 35(4): 417-433.
[21]  Li D F. The GOWA operator based approach to multi-attribute decision making using intuitionistic fuzzy sets[J]. Mathematical and Computer Modelling, 2011, 53(6): 1182-1196.
[22]  Dymova L, Sevastjanov P. An interpretation of intuitionistic fuzzy sets in terms of evidence theory: Decision making aspect[J]. Knowledge-based Systems, 2010, 23(8): 772-782.
[23]  Atanassov K. Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems 1986, 20(1): 87-96.
[24]  Atanassov K. New operations defined over the intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1994, 61(2): 137-142.
[25]  De S K, Biswas R, Roy A R. Some operations on intuitionistic fuzzy sets[J]. Fuzzy Set and Systems, 2000, 114(3): 477-484.
[26]  Hong D H, Choi C H. Multicriteria fuzzy decision-making problems based on vague set theory[J]. Fuzzy Sets and Systems, 2000, 114(1): 103-113.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133