Vapnik V. The nature of statistical learning theory[M]. New York: Springer Verlag, 1995: 101-122.
[2]
Bradford J R, West Head D R. Improved prediction of protein binding sites using a support vector machines approach[J]. Bioinformatics, 2005, 21(8): 1487-1494.
[3]
Tao Q, Chu D J, Wang J. Recursive support vector machines for dimensionality reduction[J]. IEEE Trans on Neural Networks, 2008, 19(1): 189-193.
(Liu B, Chen C P, Feng H M, et al. A SVM parameters selection algorithm based on Fisher criterion[J]. J of Shandong University: Natural Science, 2012, 47(7): 50-55.)
(Tang Y H, Guo W M, Gao J H. SVM parameter selection algorithm based on maximum kernel similarity diversity[J]. Pattern Recognition and Artificial Intelligence, 2010, 23(2): 210-215.)
(Wei X Y, Pan H X. Particle swarm optimization and intelligent fault diagnosis[M]. Beijing: National Defense Industry Press, 2010: 69-73.)
[20]
Smola A J, Schelkopf B. A tutorial on support vector regression[J]. Statistics and Computing, 2004, 14(3): 199-222.
[21]
Penalver B A, Escolano R F, Saez J M. Learning gaussian mixture models with entropy-based criterion[J]. IEEE Trans on Neural Networks, 2009, 20(11): 1756-1771.
[22]
Kennedy J K, Eberhart R C. Particle swarm optimization[C]. Proc of the IEEE Int Conf on Neural Networks. Perth Western, 1995: 1942-1946.