全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于Fisher准则和最大熵原理的SVM核参数选择方法

DOI: 10.13195/j.kzyjc.2013.1071, PP. 1991-1996

Keywords: 支持向量机,核函数,参数选择,Fisher,准则,最大熵原理,粒子群优化算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对支持向量机(SVM)核参数选择困难的问题,提出一种基于Fisher准则和最大熵原理的SVM核参数优选方法.首先,从SVM分类器原理出发,提出SVM核参数优劣的衡量标准;然后,根据此标准利用Fisher准则来优选SVM核参数,并引入最大熵原理进一步调整算法的优选性能.整个模型采用粒子群优化算法(PSO)进行参数寻优.UCI标准数据集实验表明了所提方法具有良好的参数选择效果,优选出的核参数能够使SVM具有较高的泛化性能.

References

[1]  Vapnik V. The nature of statistical learning theory[M]. New York: Springer Verlag, 1995: 101-122.
[2]  Bradford J R, West Head D R. Improved prediction of protein binding sites using a support vector machines approach[J]. Bioinformatics, 2005, 21(8): 1487-1494.
[3]  Tao Q, Chu D J, Wang J. Recursive support vector machines for dimensionality reduction[J]. IEEE Trans on Neural Networks, 2008, 19(1): 189-193.
[4]  孙健, 王成华. 基于mRMR原则和优化SVM的模拟电路故障诊断[J]. 仪器仪表学报, 2013, 34(1): 221-226.
[5]  (Sun J, Wang C H. Analog circuit fault diagnosis based on mRMR and optimized SVM[J]. Chinese J of Scientific Instrument, 2013, 34(1): 221-226.)
[6]  刘飚, 陈春萍, 封化民, 等. 基于Fisher 准则的SVM参数选择算法[J]. 山东大学学报: 理学版, 2012, 47(7): 50-55.
[7]  (Liu B, Chen C P, Feng H M, et al. A SVM parameters selection algorithm based on Fisher criterion[J]. J of Shandong University: Natural Science, 2012, 47(7): 50-55.)
[8]  奉国和. SVM分类核函数及参数选择比较[J]. 计算机工程与应用, 2011, 47(3): 123-125.
[9]  (Feng G H. Parameter optimizing for support vector machines classification[J]. Computer Engineering and Applications, 2011, 47(3): 123-125.)
[10]  林升梁, 刘志. 基于RBF 核函数的支持向量机参数选择[J]. 浙江工业大学学报, 2007, 35(2): 163-167.
[11]  (Lin S L, Liu Z. Parameter selection in SVM with RBF kernel function[J]. J of Zhejiang University of Technology, 2007, 35(2): 163-167.)
[12]  Chapelle O, Vapnik V, Bousqet O, et al. Choosing multiple parameters for support vector machines[J]. Machine Learning, 2002, 46(1): 131-159.
[13]  唐耀华, 郭为民, 高静怀. 基于核相似性差异最大化的支持向量机参数选择算法[J]. 模式识别与人工智能, 2010, 23(2): 210-215.
[14]  (Tang Y H, Guo W M, Gao J H. SVM parameter selection algorithm based on maximum kernel similarity diversity[J]. Pattern Recognition and Artificial Intelligence, 2010, 23(2): 210-215.)
[15]  李晓宇, 张新峰, 沈兰荪. 一种确定径向基核函数参数的方法[J]. 电子学报, 2005. 33(12A): 2459-2463.
[16]  (Li X Y, Zhang X F, Shen L S. A selection means on the parameter of radius basis function[J]. Acta Electronica Sinica, 2005, 33(12A): 2459-2463.)
[17]  Xiong H L, Swamy M N S, Ahmad M O. Optimizing the kernel in the empirical feature space[J]. IEEE Trans on Neural Networks, 2005, 16(2): 460-474.
[18]  魏秀业, 潘宏侠. 粒子群优化及智能故障诊断[M]. 北京: 国防工业出版社, 2010: 69-73.
[19]  (Wei X Y, Pan H X. Particle swarm optimization and intelligent fault diagnosis[M]. Beijing: National Defense Industry Press, 2010: 69-73.)
[20]  Smola A J, Schelkopf B. A tutorial on support vector regression[J]. Statistics and Computing, 2004, 14(3): 199-222.
[21]  Penalver B A, Escolano R F, Saez J M. Learning gaussian mixture models with entropy-based criterion[J]. IEEE Trans on Neural Networks, 2009, 20(11): 1756-1771.
[22]  Kennedy J K, Eberhart R C. Particle swarm optimization[C]. Proc of the IEEE Int Conf on Neural Networks. Perth Western, 1995: 1942-1946.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133