全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于二阶滑模观测器的连续系统故障估计

DOI: 10.13195/j.kzyjc.2013.1454, PP. 2271-2276

Keywords: 二阶滑模观测器,super-twisting,算法,故障估计,Lyapunov函数

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对传统的滑模观测器在实现故障估计时带来的抖振问题,设计基于super-twisting算法的二阶滑模观测器以稳定地估计出故障.针对以往利用几何或齐次性方法证明super-twisting算法稳定性过程繁琐的缺点,采用Lyapunov函数来证明稳定性.给出的故障估计结果克服了传统的滑模观测器在估计故障时带来的时延或引进新参数等缺点.最后,将所提出的方法应用于某型飞控系统,结果表明了所提出方法的有效性.

References

[1]  Chen J, Patton R J. Robust model-based fault diagnosis for dynamic systems[M]. Boston: Kluwer Academic Publishers, 1999: 1-10.
[2]  周东华, 叶银忠. 现代故障诊断与容错控制[M]. 北京:清华大学出版社, 2000: 1-18.
[3]  (Zhou D H, Ye Y Z. Modern fault diagnosis and fault tolerant control[M]. Beijing: Tsinghua University Press, 2000: 1-18.)
[4]  Yoo S J. Actuator fault detection and adaptive accommodation control of flexible-joint robots[J]. Control Theory & Applications, 2012, 6(10): 1497-1507.
[5]  (Zhao J, Gu X S, Shen Z Y. Actuator fault detection and reconstruction in the uncertain dynamical system[J]. Control and Decision, 2007, 22(5): 510-514.)
[6]  Alwi H, Edwards C, Tan C P. Sliding mode estimation schemes for incipient sensor faults[J]. Automatica, 2009, 45(7): 1679-1685.
[7]  Edwards C, Alwi H, Tan C P. Sliding mode methods for fault detection and fault tolerant control with application to aerospace systems[J]. Int J of Applied Mathematics and Computer Science, 2012, 22(1): 109-124.
[8]  Gao C, Zhao Q, Duan G. Robust actuator fault diagnosis scheme for satellite attitude control systems[J]. J of the Franklin Institute, 2013, 350(9): 2560-2580.
[9]  Zhang X, Tang L, Decastro J. Robust fault diagnosis of aircraft engines: A nonlinear adaptive estimation-based approach[J]. IEEE Trans on Control Systems Technology, 2013, 21(3): 861-868.
[10]  Alcorta Garcia E, Frank P M. Deterministic nonlinear observer-based approaches to fault diagnosis: A survey[J]. Control Engineering Practice, 1997, 5(5): 663-670.
[11]  Hwang I, Kim S, Kim Y, et al. A survey of fault detection, isolation, and reconfiguration methods[J]. IEEE Trans on Control Systems Technology, 2010, 18(3): 636-653.
[12]  Jiang B, Staroswiecki M, Cocquempot V. Fault accommodation for nonlinear dyanmic systems[J]. IEEE Trans on Automatic Control, 2006, 51(9): 1578-1583.
[13]  Zhang K, Staroswiecki M, Jiang B. Static output feedback based fault accommodation design for continuous-time dynamic systems[J]. Int J of Control, 2011, 84(2): 412-423.
[14]  Dong Q, Zhong M, Ding S X. Active fault tolerant control for a class of linear time-delay systems in finite frequency domain[J]. Int J of Systems Science, 2012, 43(3): 543-551.
[15]  Qiu J, Ren M, Niu Y, et al. Fault estimation for nonlinear dynamic systems[J]. Circuits, Systems, and Signal Processing, 2012, 31(2): 555-564.
[16]  Gao C, Duan G. Robust adaptive fault estimation for a class of nonlinear systems subject to multiplicative faults[J]. Circuits, Systems, and Signal Processing, 2012, 31(6): 2035-2046.
[17]  Zhang K, Jiang B, Cocquempot V. Adaptive observer-based fast fault estimation[J]. Int J of Control Automation and Systems, 2008, 6(3): 320-326.
[18]  张柯, 姜斌, 刘京津. 基于自适应观测器控制系统的快速故障调节[J]. 控制与决策, 2008, 23(7): 771-775.
[19]  (Zhang K, Jiang B, Liu J J. Fast fault accommodation of control systems by using adaptive observer[J]. Control and Decision, 2008, 23(7): 771-775.)
[20]  Edwards C, Spurgeon S K, Patton R J. Sliding mode observers for fault detection and isolation[J]. Automatica, 2000, 36(4): 541-553.
[21]  赵瑾, 顾幸生, 申忠宇. 不确定动态系统的执行器故障检测与重构[J]. 控制与决策, 2007, 22(5): 510-514.
[22]  He J, Zhang C. Fault reconstruction based on sliding mode observer for nonlinear systems[J]. Mathematical Problems in Engineering, 2012: 1-22.
[23]  Levant A. Robust exact differentiation via sliding mode technique[J]. Automatica, 1998, 34(3): 379-384.
[24]  Moreno J A, Osorio M. A Lyapunov approach to second order sliding mode controllers and observers[C]. Proc of the IEEE Int Conf on Decision and Control. New York, 2008: 2856-2861.
[25]  Levant A. Higher-order sliding modes, differentiation and output-feedback control[J]. Int J of Control, 2003, 76(9-10): 924-941.
[26]  Levant A. Homogeneity approach to high-order sliding mode design[J]. Automatica, 2005, 41(5): 823-830.
[27]  Levant A. Principles of 2-sliding mode design[J]. Automatica, 2007, 43(4): 576-586.
[28]  Utkin V I. Sliding modes in control and optimization[M]. Berlin: Springer-Verlag, 1992: 206-217.
[29]  Molinari B. A strong controllability and observability in linear multivariable control[J]. IEEE Trans on Automatic Control, 1976, 21(5): 761-764.
[30]  Bhat S P, Bernstein D S. Continuous finite-time stabilization of the translational and rotational double integrators[J]. IEEE Trans on Automatic Control, 1998, 43(5): 678-682.
[31]  Halanary A. Differential equations: Stability, oscillations, time lags[M]. New York and London: Academic Press, 1966: 39-46.
[32]  Yan X G, Edwards C. Robust sliding mode observer-based actuator fault detection and isolation for a class of nonlinear systems[J]. Int J of Systems Science, 2008, 39(4): 349-359.
[33]  Edwards C, Spurgeon S K. On the development of discontinuous observers[J]. Int J of control, 1994, 59(5): 1211-1229.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133