全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

不确定切换时滞非线性系统状态切换的指数稳定性

DOI: 10.13195/j.kzyjc.2013.0880, PP. 2247-2252

Keywords: 指数稳定,非线性切换系统,不确定,时变时滞,切换信号

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用状态依赖控制策略对切换信号进行设计,使得一类参数不确定时滞非线性切换系统指数稳定且具有一定的H∞抗干扰性能.利用Lyapunov-Krasovskii(LK)函数方法,以线性矩阵不等式组的方式,给出了稳定切换律存在的充分条件,并且该系统是指数稳定的.通过引入自由矩阵并结合积分不等式技巧,得到了保守性较低的稳定性条件.仿真算例表明了所提出方法的有效性和较低的保守性.

References

[1]  郑刚, 谭民, 宋永华. 混杂系统的研究进展[J]. 控制与决策, 2004, 19(1): 7-12.
[2]  (Zheng G, Tan M, Song Y H. Research on hybrid systems: A survey[J]. Control and Decision, 2004, 19(1): 7-12.)
[3]  Hespanha J P, Morse A S. Stability of switched systems with average dwell-time[C]. Proc of the 38th IEEE Conf on Decision and Control. Phoenix: IEEE, 1999, 3: 2655-2660.
[4]  Liberzon D, Morse A S. Basic problems in stability and design of switched systems[J]. Control Systems, 1999, 19(5): 59-70.
[5]  Kharitonov V L, Zhabko A P. Lyapunov-Krasovskii approach to the robust stability analysis of time-delay systems[J]. Automatica, 2003, 39(1): 15-20.
[6]  Sun X M, Wang W, Liu G P, et al. Stability analysis for linear switched systems with time-varying delay[J]. IEEE Trans on Systems, Man, and Cybernetics, Part B: Cybernetics, 2008, 38(2): 528-533.
[7]  Sun X M, Zhao J, Hill D J. Stability and L2-gain analysis for switched delay systems: A delay-dependent method[J]. Automatica, 2006, 42(10): 1769-1774.
[8]  王天成, 刘小梅, 高荣. 一类不确定时滞系统的非线性H∞ 控制[J]. 控制与决策, 2009, 24(6): 945-948.
[9]  (Wang T C, Liu X M, Gao R. Nonlinear H∞ control for a class of uncertain systems with time-delay[J]. Control and Decision, 2009, 24(6): 945-948.)
[10]  Xie D, Wang L, Hao F, et al. LMI approach to?L2-gain analysis and control synthesis of uncertain switched systems[C]. Proc of IEE Conf on Control Theory and Applications. Beijing, 2004, 151(1): 21-28.
[11]  Morse A S. Supervisory control of families of linear set-point controllers, Part I: Exact matching[J]. IEEE Trans on Automatic Control, 1996, 41(10): 1413-1431.
[12]  Zhao X, Zhang L, Shi P, et al. Stability and stabilization of switched linear systems with mode-dependent average dwell time[J]. IEEE Trans on Automatic Control, 2012, 57(7): 1809-1815.
[13]  Johansson M, Rantzer A. Computation of piecewise quadratic Lyapunov functions for hybrid systems[J]. IEEE Trans on Automatic Control, 1998, 43(4): 555-559.
[14]  Bacciotti A. Stabilization by means of state space depending switching rules[J]. Systems and Control Letters, 2004, 53(3): 195-201.
[15]  Sun Z. Stabilizing switching design for switched linear systems: A state-feedback path-wise switching approach[J]. Automatica, 2009, 45(7): 1708-1714.
[16]  Phat V N, Botmart T, Niamsup P. Switching design for exponential stability of a class of nonlinear hybrid time-delay systems[J]. Nonlinear Analysis: Hybrid Systems, 2009, 3(1): 1-10.
[17]  Lien C H, Yu K W, Chung Y J, et al. Switching signal design for global exponential stability of uncertain switched nonlinear systems with time-varying delay[J]. Nonlinear Analysis: Hybrid Systems, 2011, 5(1): 10-19.
[18]  Lien C H, Yu K W, Chung Y J, et al.H∞? performance for uncertain discrete switched systems with interval time-varying delay via switching signal design[J]. Applied Mathematical Modelling, 2013, 37(4): 2484-2494.
[19]  李娇, 赵军. 具有状态时滞的离散时间切换系统的H∞?滤波器设计: 依赖状态的切换方法[J]. 控制与决策, 2012, 27(11): 1607-1620.
[20]  (Li J, Zhao J.?H∞? filtering for discrete-time switched systems with state delays: A state-dependent switching method[J]. Control and Decision, 2012, 27(11): 1607-1620.)
[21]  Uhlig F. A recurring theorem about pairs of quadratic forms and extensions: A survey[J]. Linear Algebra and Its Applications, 1979, 25: 219-237.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133