全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类区间多目标粒子群优化算法

DOI: 10.13195/j.kzyjc.2013.1435, PP. 2171-2176

Keywords: 多目标优化,区间参数,粒子群优化,模糊支配

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对区间参数多目标优化问题,提出一种基于模糊支配的多目标粒子群优化算法.首先,定义基于决策者悲观程度的模糊支配关系,用于比较解的优劣;然后,定义一种适于区间目标值的拥挤距离,以更新外部存储器并从中选择领导粒子;最后,对多个区间多目标测试函数进行仿真实验,实验结果验证了所提出算法的有效性.

References

[1]  Philipp L, Daniel E S. An optimization algorithm for imprecise multi-objective problem functions[C]. Proc of IEEE Congress on Evolutionary Computation. Munich: IEEE Press, 2005: 459-466.
[2]  Kao C, Liu S T. Linear programming with interval data: A two-level programming approach[M]. Optimization, Simulation and Control. New York: Springer, 2013: 63-77.
[3]  Luo J, Li W, Wang Q. Checking strong optimality of interval linear programming with inequality constraints and nonnegative constraints[J]. J of Computational and Applied Mathematics, 2014, 260: 180-190.
[4]  Borza M, Rambely A, Saraj M. Solving linear fractional programming problems with interval coefficients in the objective function: A new approach[J]. Applied Mathematical Sciences, 2012, 6(69): 3443-3452.
[5]  Huang G H, Cao M F. Analysis of solution methods for interval linear programming[J]. J Environ Inform, 2011, 17(2): 54-64.
[6]  常志朋, 程龙生, 刘家树. 基于马田系统与TOPSIS 的区间数多属性决策方法[J]. 系统工程理论实践, 2014, 34(1): 168-175.
[7]  (Chang Z P, Cheng L S, Liu J S. Multiple attribute decision making method with intervals based on Mahalanobis-Taguchi system and TOPSIS method[J]. Systems Engineering - Theory and Practice, 2014, 34(1): 168-175.)
[8]  Philipp L. Multi-objective optimization of problems with epistemic uncertainty[J]. Lecture Notes in Computer Science, 2005, 3410: 413-427.
[9]  Sahoo L, Bhunia A K, Kapur P K. Genetic algorithm based multi-objective reliability optimization in interval environment[J]. Computers & Industrial Engineering, 2012, 62(1): 152-160.
[10]  孙靖, 巩敦卫, 季新芳. 基于偏好方向的区间多目标交互进化算法[J]. 控制与决策, 2013, 28(4): 542-546.
[11]  (Sun J, Gong D W, Ji X F. Interactive evolutionary algorithms for interval multi-objective optimization problems based on preference direction[J]. Control and Decision, 2013, 28(4): 542-546.)
[12]  Kennedy J, Eberhart R C. Particle swarm optimization[C]. Proc of IEEE Int Conf on Neural Networks. Perth: IEEE Press, 1995: 1942-1948.
[13]  张勇, 巩敦卫, 郝国生, 等. 含区间参数多目标系统的微粒群优化算法[J]. 自动化学报, 2008, 34(8): 921-928.
[14]  (Zhang Y, Gong D W, Hao G S, et al. Particle warm optimization for multi-objective systems with interval parameters[J]. Acta Automatica Sinica, 2008, 34(8): 921-928.)
[15]  Lodwick W A, Jamison K D. Special issue: Interfaces between fuzzy set theory and interval analysis[J]. Fuzzy Sets and Systems, 2003, 135(1): 1-3.
[16]  Sengupta A, Pal T K. On comparing interval numbers[J]. European J of Operational Research, 2000, 127(1): 28-43.
[17]  Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Trans on Evolutionary Computation, 2002, 6(2): 182-197.
[18]  张勇. 区间多目标优化问题的微粒群优化理论及应用[D]. 徐州: 中国矿业大学信息与电气工程学院, 2009.
[19]  (Zhang Y. Theory of particle swarm optimization for interval multi-objective optimization problems and applications[D]. Xuzhou: School of Information and Electronic Engineering, China University of Mining and Technology, 2009.)
[20]  Pham M T, Zhang D, Koh C S. Multi-guider and cross-searching approach in multi-objective particle swarm optimization for electromagnetic problems[J]. IEEE Trans on Magnetics, 2012, 48(2): 539-542.
[21]  Zitzler E, Deb K, Thiele L. Comparison of multiobjective evolutionary algorithms: Empirical results[J]. Evolutionary Computation, 2000, 8(2): 173-195.
[22]  Schott J R. Fault tolerant design using single and multicriteria genetic algorithm optimization[D]. Cambridge: Massachusetts Institute of Technology, 1995.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133