全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

网络化多胞型系统的变增益H∞控制

DOI: 10.13195/j.kzyjc.2013.1258, PP. 137-142

Keywords: 多胞型系统,网络控制系统,有界参数变化速率,变增益H∞,控制,参数依赖Lyapunov函数

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究参数变化速率有界的网络化多胞型系统的变增益H∞控制问题.采用时滞状态增广方法处理状态传输时延,得到切换多胞型系统模型;考虑参数变化速率约束与参数传输时延影响,给出对当前参数、次刻参数和时滞参数三元组的多胞描述方法;进而基于参数依赖切换Lyapunov函数方法给出变增益H∞控制器的LMI设计准则.该方法将已有结果推广至包含网络传输时延的情形,具有较低的保守性.仿真实例表明了所提出方法的有效性.

References

[1]  虞忠伟, 陈辉堂, 王月娟. 基于LMI 方法的机器人LPV鲁棒H∞ 控制器设计[J]. 控制与决策, 2001, 16(2): 146-160.
[2]  (Yu Z W, Chen H T, Wang Y J. Robot manipulator LPV robust?H∞? controller design based on LMI approach[J]. Control and Decision, 2001, 16(2): 146-160.)
[3]  Huang X Y, Wang Q, Wang Y L, et al. Adaptive augmentation of gain-scheduled controller for aerospace vehicles[J]. J of Systems Engineering and Electronics, 2013, 24(2): 272-280.
[4]  Montagner V F, Oliveira R C L F, Peres P L D, et al.
[5]  Linear matrix inequality characterisation for?H∞ and?H2 guaranteed cost gain-scheduling quadratic stabilisation of linear time-varying polytopic systems[J]. IET Control Theory and Applications, 2007, 1(6): 1726-1735.
[6]  Geromel J C, Colaneri P. Robust stability of time varying polytopic systems[J]. Systems and Control Letters, 2006, 55(1): 81-85.
[7]  Chesi G, Garulli A, Tesi A, et al. Robust stability of time-varying polytopic systems via parameter-dependent homogeneous Lyapunov functions[J]. Automatica, 2007, 43(2): 309-316.
[8]  Oliveira R C L F, Peres P L D. Time-varying discrete-time linear systems with bounded rates of variation: Stability analysis and control design[J]. Automatica, 2009, 45(11): 2620-2626.
[9]  De Caigny J, Camino J F, Oliveira R C L F, et al. Gain-scheduled ??2 and ??∞ control of discrete-time polytopic time-varying systems[J]. IET Control Theory and Applications, 2010, 4(3): 362-380.
[10]  De Caigny J, Camino J F, Oliveira R C L F, et al. Gain-scheduled dynamic output feedback control for discrete-time LPV systems[J]. Int J of Robust and Nonlinear Control, 2012, 22(5): 535-558.
[11]  Hespanha J P, Naghshtabrizi P, Xu Y G. A survey of recent results in networked control systems[J]. Proc of IEEE, 2007, 95(1): 138-162.
[12]  Gupta R A, Chow M Y. Networked control system: Overview and research trends[J]. IEEE Trans on Industrial Electronics, 2010, 57(7): 2527-2535.
[13]  Hetel L, Daafouz J, Iung C. Equivalence between the Lyapunov-Krasovskii functionals approach for discrete delay systems and that of the stability conditions for switched systems[J]. Nonlinear Analysis: Hybrid Systems, 2008, 2(3): 697-705.
[14]  Hu K, Yuan J Q. Delay-dependent?H∞ control of linear discrete-time systems with time-varying delay via switched system approach[J]. Int J of Adaptive Control and Signal Processing, 2009, 23(12): 1104-1112.
[15]  Zhang L X, Shi P, Boukas E-K, et al.?H∞?control of switched linear discrete-time systems with polytopic uncertainties[J]. Optimal Control Applications and Methods, 2006, 27(5): 273-291.
[16]  Deaecto G S, Geromel J C.?H∞ state feedback switched control for discrete time-varying polytopic systems[J]. Int J of Control, 2013, 86(4): 591-598.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133