(Gui W H, Yang C H, Lu M, et al. Machine-vision-based online measuring and controlling technologies for mineral flotation ―A review[J]. Acta Automatica Sinica, 2013, 39(11): 1879-1887.)
[5]
Moolman DW, Aldrich C, Van Deventer J S J, et al. Digital image processing as a tool for on-line monitoring of froth in flotation plants[J]. Minerals Engineering, 1994, 7(9): 1149-1164.
[6]
Yang C H, Xu C H, Gui W H, et al. Application of high light removal and multivariate image analysis to color measurement of flotation bubble images[J]. Int J of Imaging Systems and Technology, 2009, 19(4): 316-322.
(Yang C H, Zhou K J, Mu X M, et al. Froth color and size measurement method for flotation based on computer vision[J]. Chinese J of Scientific Instrument, 2009, 30(4): 717-721.)
[9]
Cit I R C, Aktas Z, Ber Berr. Off line image analysis for froth flotation of coal[J]. Computers and Chemical Engineering, 2004, 28(60): 625-632.
[10]
Bartolacci G, Pelletier R, Tessier J. Application of numerical image analysis to process diagnosis and physical parameter measurement in mineral processes, Part I: Flotation control based on froth textural characteristic[J]. Minerals Engineering, 2006, 19(6/7/8): 734-747.
[11]
Bao L, Bodil R. Bubble size estimation for flotation processes[J]. Minerals Engineering, 2008, 21(7): 539-548.
[12]
Xu C H, Gui W H, Yang C H. Flotation process fault detection using output PDF of bubble size distribution[J]. Minerals Engineering, 2012, 26(1): 5-12.
[13]
Aldrich C, Maiiais C, Shean B J, et al. Online monitoring and control of froth flotation systems with machine vision: A review[J]. Int J of Mineral Processing, 2010, 96(4): 1-13.
[14]
Lin X Z, Zhao G Q, Gu Y Y. A classification of flotation froth based on geometry[C]. Proc of the 2007 IEEE Int Conf on Mechatronics and Automation. Harbin, 2007: 2716-2720.
[15]
Moolman D W, Aldrich C, VanDeventer J S J. The videographic characterization of flotation froths using neural networks[C]. Neural Networks for Chemical Engineers. Elsevier, 1995: 525-545.
[16]
Moolman D W, Aldrich C, Van Deventer J S J, et al. Interpretation of flotation froth surfaces by using digital image analysis and neural networks[J]. Chemical Engineering Science, 1995, 50(22): 3501-3513.
[17]
Hargrave J M, Hall S T. Diagnosis of concentrate grade and mass flowrate in tin flotation from colour and surface texture analysis[J]. Minerals Engineering, 1997, 10(6): 613-621.
[18]
Bharati M H, MacGregor J F. Image texture analysis: Methods and comparisons[J]. Chemometrics and Intelligent Laboratory Systems, 2004, 72(1): 57-71.
(Sun Y K. Wavelet transform and image graphics processing technology[M]. Beijing: Tsinghua University Press, 2012: 135-145.)
[21]
Liu J J, Macgregor J F, Duchesne C, et al. Flotation froth monitoring using multiresolutional multivariate image analysis[J]. Minerals Engineering, 2005, 18(1): 65-76.
[22]
Mallat S G. A theory for multiresolution signal decomposition: The wavelet representation[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674-693.
[23]
Vetterli M, Kovacevic J. Wavelets and subband coding[M]. Englewood Cliffs: Prentice Hall, 1995: 79-81.
Qian H M, Mao Y B, Xiang W B, et al. Recognition of human activities using SVM multi-class classifier[J]. Pattern Recognition Letters, 2010, 31(2): 100-111.