全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

浮选泡沫图像等效尺寸分布特征提取

DOI: 10.13195/j.kzyjc.2013.1339, PP. 131-136

Keywords: 泡沫图像,小波分解与重构,最小误差阈值,等效尺寸分布特征

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用图像分割方法提取浮选泡沫图像的尺寸分布特征易受光照影响,鲁棒性不强,而利用小波纹理分析方法提取泡沫图像纹理特征则具有多尺度统计特性,对光照鲁棒性较强,但没有形态学意义.针对这一问题,提出一种浮选泡沫图像等效尺寸分布特征提取方法,提取一种新的浮选泡沫图像特征—–等效尺寸分布特征,并将其应用于铜浮选泡沫图像分类识别.实验结果表明,所提取的等效尺寸分布特征可以有效区分3种不同浮选工况所对应的泡沫图像.

References

[1]  桂卫华. 矿物浮选泡沫图像处理与过程监测技术[M]. 长沙: 中南大学出版社, 2013: 11-13.
[2]  (Gui W H. Mineral fotation froth image processing and process monitoring technology[M]. Changsha: Central South University Press, 2013: 11-13.)
[3]  桂卫华, 阳春华, 卢明, 等. 基于机器视觉的矿物浮选 过程监控技术研究进展[J]. 自动化学报, 2013, 39(11): 1879-1887.
[4]  (Gui W H, Yang C H, Lu M, et al. Machine-vision-based online measuring and controlling technologies for mineral flotation ―A review[J]. Acta Automatica Sinica, 2013, 39(11): 1879-1887.)
[5]  Moolman DW, Aldrich C, Van Deventer J S J, et al. Digital image processing as a tool for on-line monitoring of froth in flotation plants[J]. Minerals Engineering, 1994, 7(9): 1149-1164.
[6]  Yang C H, Xu C H, Gui W H, et al. Application of high light removal and multivariate image analysis to color measurement of flotation bubble images[J]. Int J of Imaging Systems and Technology, 2009, 19(4): 316-322.
[7]  阳春华, 周开军, 牟学民, 等. 基于机器视觉的浮选泡 沫颜色及尺寸测量方法[J]. 仪器仪表学报, 2009, 30(4): 717-721.
[8]  (Yang C H, Zhou K J, Mu X M, et al. Froth color and size measurement method for flotation based on computer vision[J]. Chinese J of Scientific Instrument, 2009, 30(4): 717-721.)
[9]  Cit I R C, Aktas Z, Ber Berr. Off line image analysis for froth flotation of coal[J]. Computers and Chemical Engineering, 2004, 28(60): 625-632.
[10]  Bartolacci G, Pelletier R, Tessier J. Application of numerical image analysis to process diagnosis and physical parameter measurement in mineral processes, Part I: Flotation control based on froth textural characteristic[J]. Minerals Engineering, 2006, 19(6/7/8): 734-747.
[11]  Bao L, Bodil R. Bubble size estimation for flotation processes[J]. Minerals Engineering, 2008, 21(7): 539-548.
[12]  Xu C H, Gui W H, Yang C H. Flotation process fault detection using output PDF of bubble size distribution[J]. Minerals Engineering, 2012, 26(1): 5-12.
[13]  Aldrich C, Maiiais C, Shean B J, et al. Online monitoring and control of froth flotation systems with machine vision: A review[J]. Int J of Mineral Processing, 2010, 96(4): 1-13.
[14]  Lin X Z, Zhao G Q, Gu Y Y. A classification of flotation froth based on geometry[C]. Proc of the 2007 IEEE Int Conf on Mechatronics and Automation. Harbin, 2007: 2716-2720.
[15]  Moolman D W, Aldrich C, VanDeventer J S J. The videographic characterization of flotation froths using neural networks[C]. Neural Networks for Chemical Engineers. Elsevier, 1995: 525-545.
[16]  Moolman D W, Aldrich C, Van Deventer J S J, et al. Interpretation of flotation froth surfaces by using digital image analysis and neural networks[J]. Chemical Engineering Science, 1995, 50(22): 3501-3513.
[17]  Hargrave J M, Hall S T. Diagnosis of concentrate grade and mass flowrate in tin flotation from colour and surface texture analysis[J]. Minerals Engineering, 1997, 10(6): 613-621.
[18]  Bharati M H, MacGregor J F. Image texture analysis: Methods and comparisons[J]. Chemometrics and Intelligent Laboratory Systems, 2004, 72(1): 57-71.
[19]  孙延奎. 小波变换与图像、图形处理技术[M]. 北京: 清华大学出版社, 2012: 135-145.
[20]  (Sun Y K. Wavelet transform and image graphics processing technology[M]. Beijing: Tsinghua University Press, 2012: 135-145.)
[21]  Liu J J, Macgregor J F, Duchesne C, et al. Flotation froth monitoring using multiresolutional multivariate image analysis[J]. Minerals Engineering, 2005, 18(1): 65-76.
[22]  Mallat S G. A theory for multiresolution signal decomposition: The wavelet representation[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674-693.
[23]  Vetterli M, Kovacevic J. Wavelets and subband coding[M]. Englewood Cliffs: Prentice Hall, 1995: 79-81.
[24]  Kittler J, Illingworth J. Minimum error thresholding[J]. Pattern Recognition, 1986, 19(1): 41-47.
[25]  Qian H M, Mao Y B, Xiang W B, et al. Recognition of human activities using SVM multi-class classifier[J]. Pattern Recognition Letters, 2010, 31(2): 100-111.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133