Yan S, Xu D, Zhang B, et al. Graph embedding and extensions: A general framework for dimensionality reduction[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007, 29(1): 40-51.
[2]
Tenenbaum J, Silva V, Langford J. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290(5500): 2319-2322.
[3]
Roweis S, Saul L. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 2323-2326.
[4]
Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation, 2003, 15(6): 1373-1396.
Li X, Tao J, Zhang K. Efficient and robust feature extraction by maximum margin criterion[J]. Neural Networks, 2006, 17(1): 157-165.
[7]
Sugiyama M. Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis[J]. The J of Machine Learning Research, 2007, 8: 1027-1061.
[8]
Li W, Fowler J, Bruce L. Locality-preserving dimensionality reduction and classification for hyperspectral image analysis[J]. IEEE Trans on Geoscience and Remote Sensing, 2012, 50(4): 1185-1198.
[9]
Song Y, Nie F, Zhang C, et al. A unified framework for semi-supervised dimensionality reduction[J]. Pattern Recognition, 2009, 41(1): 2789-2799.
[10]
Zhang Z, Zhao M, Tommy W. Marginal semi-supervised sub-manifold projections with informative constraints for dimensionality reduction and recognition[J]. Neural Network, 2012, 36: 97-111.
[11]
Song Y, Nie F, Zhang C. Semi-supervised sub-manifold discriminant analysis[J]. Pattern Recognition, 2008, 29(13): 1806-1813.
[12]
Huang H, Li J, Liu J. Enhanced semi-supervised local fisher discriminant analysis for face recognition[J]. Future Generation Computer Systems, 2008, 28(1): 244-253.
[13]
Liu Z, Wang J, Man J, et al. Self-adaptive local fisher discriminant analysis for semi-supervised image recognition[J]. Int J of Biometrics, 2012, 4(4): 338-356.
[14]
Cai D, He X, Han J. Semi-supervised discriminant analysis[C]. IEEE 11th Int Conf on Computer Vision. Rio de Janeiro: Brazil, 2007: 1-7.
[15]
Sugiyama M, Ide T, Nakajima S, et al. Semi-supervised local fisher discriminant analysis for dimensionality reduction[J]. Machine Learning, 2010, 78(1/2): 35-61.
[16]
Fisher R. The use of multiple measurements in taxonomic problems[J]. Annals of Eugenics, 1936, 7(2): 179-188.
[17]
Huang H, Feng H, Peng C. Complete local fisher discriminant analysis with laplacian score ranking for face recognition[J]. Neurocomputing, 2012, 89: 64-77.
[18]
He X, Niyogi P. Locality preserving projections[C]. Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2004: 153-160.
[19]
Zhong J, Yang J, Hu Z, et al. Face recognition based on the uncorrelated discriminant transformation[J]. Pattern Recognition, 2001, 34(7): 1405-1416.
[20]
Zelnik L, Perona P. Self-tuning spectral clustering[C]. Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2005: 1601-1608.
[21]
Jolliffe I. Principal component analysis[M]. New York: Springer, 2002: 111-147.
[22]
Abdi H, Williams L. Principal component analysis[J]. Wiley Interdisciplinary Reviews: Computational Statistics, 2010, 4(2): 433-459.