Hu Q H, Xie Z X, Yu D R. Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation[J]. Pattern Recognition, 2007, 40(12): 3509-3521.
[2]
Hu Q H, Yu D R, Liu J F, et al. Neighborhood
[3]
rough set based heterogeneous feature subset selection[J]. Information Sciences, 2008, 178(18): 3577-3594.
[4]
Miao D Q, Zhao Y, Yao Y Y, et al. Relative reducts in consistent and inconsistent decision tables of the Pawlak rough set model[J]. Information Sciences, 2009, 179(24): 4140-4150.
[5]
Qian Y H, Liang J Y, Pedrycz W, et al. Positive approximation: An accelerator for attribute reduction in rough set theory[J]. Artificial Intelligence, 2010, 174(9/10): 597-618.
(Yang M, Yang P. Algorithms based on general discernibility matrix for computation of a core and attribute reduction[J]. Control and Decision, 2008, 23(9): 1049-1054.)
(Li H. Algorithm for relative reduction of knowledge in information systems based on a conditional information quantity[J]. J of China University of Mining and Technology, 2005, 34(3): 378-382.)
[10]
Shannon C E. The mathematical theory of communication[J]. Bell System Technical J, 1948, 27(3/4): 373-423.
[11]
D¨untsch I, Gediga G. Uncertainty measures of rough set prediction[J]. Artificial Intelligence, 1998, 106(1): 109-137.
[12]
Liang J Y, Shi Z Z, Li D Y, et al. Information entropy, rough entropy and knowledge granularity in incomplete information systems[J]. Int J of General Systems, 2006, 35(6): 641-654.
(Dai J H, Pan Y H. Algorithm for acquisition of decision rules based on classification consistency rate[J]. Control and Decision, 2004, 19(10): 1086-1090.)
[15]
Zhao H B, Jiang F, Wang C P. An approximation decision entropy based decision tree algorithm and its application in intrusion detection[C]. Proc of the 6th Int Conf on Rough Set and Knowledge Technology. Chengdu: Springer-Verlag, 2012: 101-106.
(Xu Z Y, Liu Z P, Yang B R, et al. A quick attribute reduction algorithm with complexity of max(O(∣C∣∣U∣),O(∣C∣2∣U/C∣))[J]. Chinese J of Computers, 2006, 29(3): 391-399.)
[18]
Bay S D. The UCI KDD repository[DB/OL]. University of
Wroblewski J. Finding minimal reducts using genetic algorithms[C]. The 2nd Annual Joint Conf on Information Sciences. North Carolina: Atlantis Press, 1995: 186-189.
[21]
Wang X Y, Yang J, Teng X L, et al. Feature selection based on rough sets and particle swarm optimization[J]. Pattern Recognition Letters, 2007, 28(4): 459-471.
[22]
Skowron A, Bazan J, Son N H, et al. RSES 2.2 User’s Guide[EB/OL]. [2005-01-19]. http://logic.mimuw.edu.pl/rses.
[23]
Hu X H. Knowledge discovery in databases: An attribute-oriented rough set approach[D]. Regina: Regina University, 1995.
[24]
Pawlak Z. Rough sets[J]. Int J of Computer and Information Sciences, 1982, 11(5): 341-356.
(Wang G Y, Yu H, Yang D C. Decision table reduction based on conditional information entropy[J]. Chinese J of Computers, 2002, 25(7): 759-766.)
[29]
Liang J Y, Xu Z B. The algorithm on knowledge reduction in incomplete information systems[J]. Int J of Uncertainty, Fuzziness and Knowledge-Based Systems, 2002, 10(1): 95-103.
[30]
Hu K Y, Lu Y C, Shi C Y. Feature ranking in rough sets[J]. AI Communication, 2003, 16(1): 41-50.