全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

从动态适值空间补偿信息:一种抗病态合作协同进化算法

DOI: 10.13195/j.kzyjc.2013.1581, PP. 25-31

Keywords: 合作协同进化算法,动态多种群策略,信息补偿

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对合作协同进化算法(CCEA)动态适值空间的特点,研究信息补偿方法以消除由问题分解所导致的病态现象,并提出基于动态多种群进化策略的抗病态CCEA.每个协进化种群可动态分离出多个变化的子种群,利用它们同时获取多个全局或局部最优解作为交互信息,以实现信息补偿.针对引发病态行为的标准测试函数,与3种典型CCEA进行比较分析,实验结果表明所提出算法能有效克服病态现象,具有良好的全局优化能力.

References

[1]  Hoverstad B A, Moe H A, Shi M. Entropy and mutual information can improve fitness evaluation in coevolution of neural networks[C]. Proc of the 2009 IEEE Congress on Evolutionary Computation. Trondheim: IEEE, 2009: 3199-3206.
[2]  陈羽, 滕弘飞. 变粒度协同进化设计算法及其在卫星舱布局设计中应用[J]. 大连理工大学学报, 2010, 6(50): 931-936.
[3]  (Chen Y, Teng H F. Coevolutionary algorithm with coarseto-fine grain strategy and its application to layout design of satellite module[J]. J of Dalian University of Technology, 2010, 6(50): 931-936.)
[4]  王冲, 景宇, 李军, 等. 协同进化方法求解多中心卫星任务规划问题[J]. 航空学报, 2010, 31(9): 1832-1840.
[5]  (Wang C, Jing Y, Li J, et al. Solving multi-center satellite mission scheduling problems by coevolutionary method[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(9): 1832-1840.)
[6]  Berger J, Happe J, Gagne C, et al. Co-evolutionary information gathering for a cooperative unmanned aerial vehicle team[C]. The 12th Int Conf on Information Fusion. Seattle, WA: IEEE, 2009: 347-354.
[7]  Wiegand R P. An analysis of cooperative coevolutionary algorithms[D]. Fairfax: Department of Computer Science, George Mason University, 2003.
[8]  Panait L, Luke S, Harrison J F. Archive-based cooperative coevolutionary algorithms[C]. Proc of the 8th Annual Conf on Genetic and Evolutionary Computation. Seattle: ACM, 2006: 345-352.
[9]  Panait L, Luke S, Wiegand R P. Biasing coevolutionary search for optimal multiagent behaviors[J]. IEEE Trans on Evolutionary Computation, 2006, 10(6): 629-645.
[10]  Ficici S G, Pollack J B. A game-theoretic memory mechanism for coevolution[C]. Genetic and Evolutionary Computation. Chicago: Springer Berlin Heidelberg, 2003: 286-297.
[11]  Ficici S G, Pollack J B. A game-theoretic approach to the simple coevolutionary algorithm[C]. Parallel Problem Solving from Nature PPSN VI. Paris: Springer Berlin Heidelberg, 2000: 467-476.
[12]  罗杰, 段建民, 陈建新. 一种引入局部交互的群体协作行为协同进化机制[J]. 机器人, 2007, 29(4): 313-319.
[13]  (Luo J, Duan J M, Chen J X. A mechanism of cooperative coevolution with local interaction for collective cooperation behaviors[J]. Robot, 2007, 29(4): 313-319.)
[14]  刘静. 协同进化算法及其应用研究[D]. 西安: 西安电子科技大学电子工程学院, 2004.
[15]  (Liu J. Coevolutionary algorithms and their applications[D]. Xi’an: School of Electronic Engineering, XiDian University, 2004.)
[16]  巩敦卫, 孙晓燕. 协同进化遗传算法理论及应用[M]. 北京: 科学出版社, 2009: 102-140.
[17]  (Gong D W, Sun X Y. Coevolutionary genetic algorithms and their applications[M]. Beijing: Science Press, 2009: 102-140.)
[18]  Peng X, Gao X, Yang S. Environment identification-based memory scheme for estimation of distribution algorithms in dynamic environments[J]. Soft Computing, 2011, 15(2): 311-326.
[19]  Branke J. Evolutionary optimization in dynamic environments[M]. Norwell: Kluwer Academic Publishers, 2001: 53-98.
[20]  Tsutsui S, Fujimoto Y, Ghosh A. Forking genetic algorithms: GAs with search space division schemes[J]. Evolutionary Computation, 1997, 5(1): 61-80.
[21]  Bucci A, Pollack J B. On identifying global optima in cooperative coevolution[C]. Proc of the 2005 Conf on Genetic and Evolutionary Computation. Singapore: ACM, 2005: 539-544.
[22]  Blackwell T, Branke J. Multiswarms, exclusion, and anticonvergence in dynamic environments[J]. IEEE Trans on Evolutionary Computation, 2006, 10(4): 459-472.
[23]  Li C, Yang S. A general framework of multipopulation methods with clustering in undetectable dynamic environments[J]. IEEE Trans on Evolutionary Computation, 2012, 16(4): 556-577.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133