从机器人输出反馈自适应神经控制中学习
, PP. 1740-1744
Keywords: 确定学习,RBF,神经网络,自适应神经控制,高增益观测器,机器人
Abstract:
针对系统参数完全未知且仅输出可测的机器人,使用径向基函数(RBF)神经网络和高增益观测器设计了一种自适应神经控制算法.该算法不仅实现了闭环系统所有信号的最终一致有界,而且沿周期跟踪轨迹实现了对未知闭环系统动态的确定学习.学过的知识可用来改进系统的控制性能,也可应用于后续相同或相似的控制任务以节约时间和能量.仿真研究表明了所设计的控制算法的正确性和有效性.
Full-Text