全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

均衡分布性与收敛性的协同进化多目标优化算法

, PP. 55-60

Keywords: 多目标优化,协同进化,分布估计算法,多概率模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了进一步提升多目标进化算法(MOEAs)的收敛速度和解集分布性,针对变量无关问题,借助合作型协同进化模型,提出一种均衡分布性与收敛性的协同进化多目标优化算法(CMOA-BDC).CMOA-BDC首先设置一个精英集合,采用支配关系从进化种群与精英集合中选择首层,并用拥挤距离保持其分布性;然后运用聚类将首层分类,并建立相应概率模型;最后通过模拟退火组合分布估计与遗传进化,达到协同进化.通过与经典MOEAs比较的结果表明,CMOA-BDC获得的解集具有更好的收敛性和分布性.

References

[1]  Deb K. Multi-Objective Optimization Using Evolutionary Algorithms[M].Chicester:John Wiley & Sons,2001.
[2]  Erickson M,Mayer A,Horn J.The niched pareto genetic algorithm 2 applied to the design of groundwater remediation systems[C]//EMO,2001:681-695.
[3]  Srinivas N,Deb K.Multi-objective optimization using non-dominated sorting in genetic algorithms [J].Evolutionary Computation,1994,2(3):221-248.
[4]  Deb K, Pratap A, Agarwal S, Meyarivan T. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II [J]. IEEE Transactions on Evolutionary Computation (S1089-778X), 2002, 6(2): 182-197.
[5]  Geng Huantong,Zhang Minhuang Lin Feng,et al.Infeasible elitists and stochastic ranking selection in constrained evolutionary multi-objective optimization.In Proceeding of SEAL06,LNCS 4247,T.-D.Wang et al.(Eds),China,Springer-Verlag,Berlin,2006,336-344.
[6]  周树德, 孙增圻. 分布估计算法综述[J]. 自动化学报, 2007, 33(2):113-124.
[7]  Godi? ; nez, A.C. ; Espinosa, L.E.M. ; Montes, E.M. ; An Experimental Comparison of Multiobjective Algorithms: NSGA-II and OMOPSO[C]. Electronics, Robotics and Automotive Mechanics Conference (CERMA), 2010
[8]  O Duda, E Hart and G Stork. Pattern Classification ( Second Edition) [M ]. USA: JohnWiley & Sons, Inc, 2001: 450 - 452.
[9]  郑金华. 多目标进化算法及其应用[M] . 北京: 科学出版社, 2007.
[10]  Schott J R.Fault tolerant design using single and multicriteria genetic algorithm optimization[D].Master,s thesis,Department of Aeronautics and Astronautics,Massachusetts Instinlte of Technology,Cambridge,Massachusetts,1995
[11]  Horn J, Nafploitis N, Goldberg D E. A niched Pareto genetic algorithm for multiobjective optimization .Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence. Orlando, FL: IEEE Press, 1994, 1 :82-87.
[12]  Horn J,Nafpliotis N,Goldberg D E.A niched pareto genetic algorithm for multiobjective optimization[C]//Proceedings of the 1st IEEE Conference on Evolutionary Computation,IEEE World Congress on Computational Intelligence,Piscataway,New Jersey: IEEE Service Center,1994,1:82-87.
[13]  Geng Huantong, Song Qingxi, Wu Tingting, Liu Jingfa. A Multi-objective Constrained Optimization Algorithm Based on Infeasible Individual Stochastic Binary-Modification[C]. //Proceedings of 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems.Shanghai IEEE, 2009:89-93,
[14]  Mitchell A Potter and Kenneth A De Jong. A Cooperative Coevolutionary Approach to Function Op timization[C ]. In Proceedings Of Parallel Problem Solving From Nature III, Sp ringer - Verlag, pp. 249 - 257, Berlin Germany, 1995.
[15]  E. Zitzler, L. Thiele, "Multiobjective Evolutionary Algorithms: A Comparative Case Studyand the Strength Pareto Approach[J]," IEEE Transactions on Evolutionary Computation, vol. 3, no. 4,pp. 257-271, November 1999.
[16]  Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results[J]. Evolutionary Computation, 2000, 8(2): 173-195.
[17]  C.A.C. Coello, A comprehensive survey of evolutionary-based multi-objective optimization[J]. Knowledge and Information Systems.1999 .1 (3), 269- 308.
[18]  Zitzler E, Laumanns M, Thiele L.SPEA2: improving the strength Pareto evolutionary algorithm, TIK- Report 103[R].2001.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133