全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

振荡型GM(1,1)幂模型及其应用

, PP. 1459-1464

Keywords: 灰色系统,小样本振荡序列,GM(1,1),幂模型,预测

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对现实世界广泛存在的小样本振荡序列建模和预测问题,提出含有系统延迟和时变参数的振荡型GM(1,1)幂模型.给出最小二乘准则下的两级参数包计算公式,在此基础上构建非线性优化模型以寻求最佳幂指数和时间作用参数,以此识别原始数据所蕴含的振荡特征.将该模型应用于应急资源需求预测,并将建模结果与传统GM(1,1)幂模型、ARIMA和EMD-ARIMA方法进行比较,结果表明振荡型GM(1,1)幂模型具有较高的精度.

References

[1]  邓聚龙. 灰理论基础[M]. 武汉: 华中科技大学出版社,
[2]  (Deng J L. The elements on grey theory[M]. Wuhan:
[3]  HUST Press, 2002: 77-89.)
[4]  Lee S C, Shih L H. Forecasting of electricity costs based on
[5]  renewable energy in Taiwan[J]. Technological Forecasting
[6]  & Social Change, 2011, 78(7): 1242-1253.
[7]  concentration in Banciao city of Taiwan[J]. Water Air Soil
[8]  分析[J]. 系统工程理论与实践, 2010, 30(8): 1380-1388.
[9]  Wang Y N, Chen Z J, Gao Z Q, et al. A generalization
[10]  67.
[11]  (Wang Z X, Dang Y G, Liu S F. An optimal GM(1,1) based
[12]  on the discrete function with exponential law[J]. System
[13]  Engineering Theory & Practice, 2008, 28(2): 61-67.)
[14]  Dang Y G, Liu S F. The GM models that ??(??) be taken as
[15]  initial value[J]. Kybernetes, 2004, 33(2): 247-255.
[16]  张岐山. 提高灰色GM(1,1) 模型精度的微粒群方法[J].
[17]  by using particle swarm optimization[J]. Chinese J of
[18]  Management Science, 2007, 15(5): 126-129.)
[19]  用[J]. 中国管理科学, 2009, 17(5): 150-155.
[20]  (Zeng B, Liu S F, Fang Z G, et al. Grey combined
[21]  Management Science, 2009, 17(5): 150-155.)
[22]  Applications, 2010, 37(2): 1784-1789.
[23]  201-205.
[24]  王正新, 党耀国, 刘思峰. GM(1,1) 幂模型求解方法及其
[25]  解的性质[J]. 系统工程与电子技术, 2009, 31(10): 2380-
[26]  2383.
[27]  and Electronics, 2009, 31(10): 2380-2383.)
[28]  exchange rates of Taiwan’s major trading partners by
[29]  Zhou J Z, Fang R C, Li Y H, et al. Parameter optimization
[30]  of nonlinear grey Bernoulli model using particle swarm
[31]  optimization[J]. Applied Mathematics and Computation,
[32]  2009, 207(2): 292-299.
[33]  Hsu L C. A genetic algorithm based nonlinear grey
[34]  Bernoulli model for output forecasting in integrated circuit
[35]  industry[J]. Expert Systems with Applications, 2010,
[36]  37(6): 4318-4323.
[37]  王正新, 党耀国, 练郑伟. 无偏GM(1,1) 幂模型及其应
[38]  用[J]. 中国管理科学, 2011, 19(4): 144-151.
[39]  (Wang Z X, Dang Y G, Lian Z W. Unbiased GM(1,1)
[40]  model and its application[J]. Chinese J of Management
[41]  王正新, 党耀国, 裴玲玲. 基于GM(1,1) 幂模型的振荡
[42]  2440-2444.
[43]  2444.)
[44]  2002: 77-89.
[45]  an enhanced gray-based learning model: A case study of
[46]  Li D C, Yeh C W, Chang C J. An improved grey-
[47]  based approach for early manufacturing data forecasting[J].
[48]  Computers & Industrial Engineering, 2009, 57(4): 1161-
[49]  1167.
[50]  Pai T Y, Ho C L, Chen S W, et al. Using seven types
[51]  of GM(1,1) model to forecast hourly particulate matter
[52]  Pollut, 2011, 217(6): 25-33.
[53]  王晓墩, 熊伟. 基于改进灰色预测模型的动态顾客需求
[54]  (Wang X D, XiongW. Dynamic customer demand analysis
[55]  based on the improved grey prediction model[J]. System
[56]  Engineering Theory & Practice, 2010, 30(8): 1380-1388.)
[57]  of the GM(1,1) direct modeling method with a step by
[58]  step optimizing grey derivative’s whiten values and its
[59]  applications[J]. Kybernetes, 2004, 33(2): 382-389.
[60]  王正新, 党耀国, 刘思峰. 基于离散指数函数优化的
[61]  GM(1,1) 模型[J]. 系统工程理论与实践, 2008, 28(2): 61-
[62]  中国管理科学, 2007, 15(5): 126-129.
[63]  (Zhang Q S. Improving the precision of GM(1,1) model
[64]  曾波, 刘思峰, 方志耕, 等. 灰色组合预测模型及其应
[65]  forecasting model and its application[J]. Chinese J of
[66]  Erdal K, Baris U, Okyay K. Grey system theory-based
[67]  models in time series prediction[J]. Expert Systems with
[68]  Deng J L. A novel grey model GM(1,1??? ,??)[J]. The J of
[69]  Grey System, 2001, 13(1): 18.
[70]  Deng J L. Undulating grey model (UGM) GM(1, 1∣ tan(??
[71]  ??? )??, sin(????? )??)[J]. The J of Grey System, 2001, 13(3):
[72]  (Wang Z X, Dang Y G, Liu S F. Solution of GM(1,1)
[73]  power model and its properties[J]. Systems Engineering
[74]  Chen C I. Application of the novel nonlinear grey
[75]  Bernoulli model for forecasting unemployment rate[J].
[76]  Chaos, Solitons and Fractals, 2008, 37(12): 278-287.
[77]  Chen C I, Chen H L, Chen S P. Forecasting of foreign
[78]  novel nonlinear grey Bernoulli model NGBM(1,1)[J].
[79]  Communications in Nonlinear Science and Numerical
[80]  Simulation, 2008, 13(6): 1194-1204.
[81]  Wang Z X, Hipel K W, Wang Q, et al. An optimized
[82]  NGBM(1,1) model for forecasting the qualified discharge
[83]  rate of industrial wastewater in China[J]. Applied
[84]  Mathematical Modelling, 2011, 35(12): 5524-5532. Pao H T, Fu H C, Tseng C L. Forecasting of CO2
[85]  emissions, energy consumption and economic growth in
[86]  China using an improved grey model[J]. Energy, 2012,
[87]  40(1): 400-409.
[88]  Science, 2011, 19(4): 144-151.)
[89]  序列建模方法[J]. 系统工程与电子技术, 2011, 33(11):
[90]  (Wang Z X, Dang Y G, Pei L L. Modeling approach for
[91]  oscillatory sequences based on GM(1,1) power model[J].
[92]  Systems Engineering and Electronics, 2011, 33(11): 2440-
[93]  Xu X Y, Qi Y Q, Hua Z S. Forecasting demand of
[94]  commodities after natural disasters[J]. Expert Systems with
[95]  Applications, 2010, 37: 4313-4317.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133