全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种基于最大边界投影和l2,1范数正则化的属性选择算法

, PP. 1485-1490

Keywords: 属性选择,最大边界投影,l2,1,范数,噪声数据,标签错误

Full-Text   Cite this paper   Add to My Lib

Abstract:

当数据含有噪声或标签错误时,传统的属性选择方法(如粗糙集)无法得到正确结果,为此提出一种针对含噪、标签错误数据的属性选择方法.首先用最大边界投影方法获得数据的最佳投影;然后通过对投影矩阵进行??2,1范数正则化操作,进而获得行稀疏的投影矩阵,据此获得对关键属性的挖掘;最后给出方法的收敛性和针对标签错误数据的有效性证明.实验结果表明,所提出的算法克服了噪声和标签错误的影响,较好地实现了针对含噪、标签错误数据的属性选择.

References

[1]  1732-1736.)
[2]  Wang Jianping, Zhang Damin. Handwritten Chinese
[3]  character recognition with variable precision rough set
[4]  Wu T T, Chen Y F, Hastie T, et al. Genomewide
[5]  association analysis by Lasso penalized logistic
[6]  Zhihua Qiao, Lan Zhou, Jianhua Zhuang. Sparse linear
[7]  selection[C]. Proc of the 27th Int Conf on Machine
[8]  Learning. Haifa, 2010: 751-758.
[9]  Xiaofei He, Deng Cai, Jiawei Han. Learning a maximum
[10]  margin subspace for image retrieval[J]. IEEE Trans on
[11]  徐怡, 李龙澍. 变精度集对势粗糙集模型[J]. 控制与决
[12]  策, 2010, 25(11): 1732-1736.
[13]  (Xu Y,Li L S. Variable precision rough set model based on
[14]  set pair situation[J]. Control and Decesion, 2010, 25(11):
[15]  approach[C]. Proc of the 2010 Int Conf on Electrical and
[16]  Control Engineering. Wuhan, 2010: 1108-1111.
[17]  Shi Zhong, Wei Tang, Taghi M. Khoshgoftaar. Boosted
[18]  noise filters for identifying mislabeled data[R]. Boca
[19]  Raton: Florida Atlantic University, 2005: 383-401.
[20]  Wu Xindong, Zhu Xingquan. Mining with noise
[21]  knowledge: Error-aware data mining[J]. IEEE Trans on
[22]  Systems, Man, and Cybernetics, Part A: Systems and
[23]  Humans, 2008, 38(4): 917-932.
[24]  regression[J]. Bioinformatics, 2009, 25(6): 714-721.
[25]  Wright J, Ganesh A, Allen Y, et al. Robust face
[26]  recognition via sparse representation[J]. IEEE Trans on
[27]  Pattern Analysis and Machine Intelligence, 2009, 31(2):
[28]  210-227.
[29]  Zhou H, Hastie T, Tibshirani R. Sparse principle
[30]  component analysis[R]. Stanford: Stanford University,
[31]  2004.
[32]  discriminant analysis with applications to high dimensional
[33]  low sample size data[J]. Int J of Applied Mathematics,
[34]  2009, 39(1): 6-29.
[35]  Deng Cai, Xiaofei He, Jiawei Han. Spectral regression: A
[36]  unified approach for sparse sub-space learning[C]. Proc of
[37]  the 7th IEEE Int Conf on Data Mining. Omaha, 2007: 73-
[38]  82.
[39]  Mahdokht Masaeli, Glenn Fung, Jennifer G Dy. From
[40]  transformation-based dimensionality reduction to feature
[41]  Knowledge and Data Engineering, 2008, 20(2): 189-201.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133