OALib Journal期刊
ISSN: 2333-9721
费用:99美元
|
|
|
一种基于最大边界投影和l2,1范数正则化的属性选择算法
, PP. 1485-1490
Keywords: 属性选择,最大边界投影,l2,1,范数,噪声数据,标签错误
Abstract:
当数据含有噪声或标签错误时,传统的属性选择方法(如粗糙集)无法得到正确结果,为此提出一种针对含噪、标签错误数据的属性选择方法.首先用最大边界投影方法获得数据的最佳投影;然后通过对投影矩阵进行??2,1范数正则化操作,进而获得行稀疏的投影矩阵,据此获得对关键属性的挖掘;最后给出方法的收敛性和针对标签错误数据的有效性证明.实验结果表明,所提出的算法克服了噪声和标签错误的影响,较好地实现了针对含噪、标签错误数据的属性选择.
References
[1] | 1732-1736.)
|
[2] | Wang Jianping, Zhang Damin. Handwritten Chinese
|
[3] | character recognition with variable precision rough set
|
[4] | Wu T T, Chen Y F, Hastie T, et al. Genomewide
|
[5] | association analysis by Lasso penalized logistic
|
[6] | Zhihua Qiao, Lan Zhou, Jianhua Zhuang. Sparse linear
|
[7] | selection[C]. Proc of the 27th Int Conf on Machine
|
[8] | Learning. Haifa, 2010: 751-758.
|
[9] | Xiaofei He, Deng Cai, Jiawei Han. Learning a maximum
|
[10] | margin subspace for image retrieval[J]. IEEE Trans on
|
[11] | 徐怡, 李龙澍. 变精度集对势粗糙集模型[J]. 控制与决
|
[12] | 策, 2010, 25(11): 1732-1736.
|
[13] | (Xu Y,Li L S. Variable precision rough set model based on
|
[14] | set pair situation[J]. Control and Decesion, 2010, 25(11):
|
[15] | approach[C]. Proc of the 2010 Int Conf on Electrical and
|
[16] | Control Engineering. Wuhan, 2010: 1108-1111.
|
[17] | Shi Zhong, Wei Tang, Taghi M. Khoshgoftaar. Boosted
|
[18] | noise filters for identifying mislabeled data[R]. Boca
|
[19] | Raton: Florida Atlantic University, 2005: 383-401.
|
[20] | Wu Xindong, Zhu Xingquan. Mining with noise
|
[21] | knowledge: Error-aware data mining[J]. IEEE Trans on
|
[22] | Systems, Man, and Cybernetics, Part A: Systems and
|
[23] | Humans, 2008, 38(4): 917-932.
|
[24] | regression[J]. Bioinformatics, 2009, 25(6): 714-721.
|
[25] | Wright J, Ganesh A, Allen Y, et al. Robust face
|
[26] | recognition via sparse representation[J]. IEEE Trans on
|
[27] | Pattern Analysis and Machine Intelligence, 2009, 31(2):
|
[28] | 210-227.
|
[29] | Zhou H, Hastie T, Tibshirani R. Sparse principle
|
[30] | component analysis[R]. Stanford: Stanford University,
|
[31] | 2004.
|
[32] | discriminant analysis with applications to high dimensional
|
[33] | low sample size data[J]. Int J of Applied Mathematics,
|
[34] | 2009, 39(1): 6-29.
|
[35] | Deng Cai, Xiaofei He, Jiawei Han. Spectral regression: A
|
[36] | unified approach for sparse sub-space learning[C]. Proc of
|
[37] | the 7th IEEE Int Conf on Data Mining. Omaha, 2007: 73-
|
[38] | 82.
|
[39] | Mahdokht Masaeli, Glenn Fung, Jennifer G Dy. From
|
[40] | transformation-based dimensionality reduction to feature
|
[41] | Knowledge and Data Engineering, 2008, 20(2): 189-201.
|
Full-Text
|
|
Contact Us
service@oalib.com QQ:3279437679 
WhatsApp +8615387084133
|
|