全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种智能优化算法解质量评价方法

, PP. 1735-1740

Keywords: 智能优化算法,解质量,聚类,序优化

Full-Text   Cite this paper   Add to My Lib

Abstract:

如何评价智能优化算法在有限时间内所得解的质量,是计算智能基础研究和工程实践中都亟待解决的问题.受序优化思想启发,针对连续优化问题,提出一种评价智能优化算法解质量的方法.首先利用聚类方法对解记录均匀化分区,然后根据适应度值分布计算对准概率作为解质量评价指标.通过对均匀采样、非均匀采样、粒子群算法和遗传算法的寻优结果进行实验表明了所提出方法的有效性.

References

[1]  (Wang L. Intelligent Optimization Algorithms with Applications[M]. Beijing: Tsinghua University Press, 2001.)
[2]  Rudolph G. Convergence analysis of canonical genetic algorithms[J]. IEEE Transactions on Neural Network, 1994, 5(1): 96-101.
[3]  Stützle T, Dorigo M. A short convergence proof for a class of ACO algorithms. IEEE Transactions on Evolutionary Computation, 2002, 6(4): 358-365.
[4]  苏丽杰,聂义勇. 旅行商问题的近优解评价方法[J]. 计算机科学, 2004, 31(10A): 310-311.
[5]  (Su LJ, Nie YY. Evaluation on Near-Optimal Solution of Traveling Salesman Problem[J]. Computer Science, 2004, 31(10A): 310-311.)
[6]  Ho Y C. An explanation of ordinal optimization: soft computing for hard problems[J]. Information Sciences, 1999, 113(3-4): 169-192.
[7]  Silverman B W. Density Estimation for Statistics and Data Analysis[M]. London, UK: Chapman & Hall, 1986.
[8]  Bishop C M. Neural Networks for Pattern Recognition [M]. Oxford, UK: Oxford University Press, 1995.
[9]  Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(1): 58-73.
[10]  王凌. 智能优化算法及其应用[M]. 北京:清华大学出版社,2001.
[11]  Ho Y C, Zhao Q C, Jia Q S. Ordinal Optimization: Soft Optimization for Hard Problems[M]. New York, USA: Springer Science+Business Media, 2007.
[12]  沈震. 优化方法解的序性能分析[D]. 北京:清华大学, 2009.
[13]  (Shen Z. Ordinal Performance Analysis of the Solution of an Optimization Algorithm[D]. Beijing: Tsinghua University, 2009.)
[14]  Hoos H H, Stützle T. Stochastic local search: foundations and applications[M]. San Francisco, CA, USA: Morgan Kaufmann, 2004.
[15]  Koza J R. Genetic Programming: On the Programming of Computers by Natural Selection[M]. Cambridge, MA: MIT Press, 1992.
[16]  Jones T, Forrest S. Fitness distance correlation as a measure of problem difficulty for genetic algorithms [C]. Proceedings of the Sixth International Conference on Genetic Algorithms, Morgan Kaufmann, San Francisco, CA, 1995, 184-192.
[17]  Dorigo M, Stützle T. Ant Colony Optimization[M]. Cambridge, MA: MIT Press, 2004.
[18]  Han J W, Kamber M, Pei J. Data Mining: Concepts and Techniques[M]. Waltham, MA: Morgan Kaufmann, 2011.
[19]  赵艳厂, 谢帆, 宋俊德. 一种新的聚类算法: 等密度线算法[J]. 北京邮电大学学报, 2002, 25(2): 8-13.
[20]  (Zhao Y C, Xie F, Song J D. DILC: A Clusering Algorithm Based on Density-isoline[J]. Journal of Beijing University of Posts and Telecommunications, 2002, 25(2): 8-13.)
[21]  Gao S, Xia Y. GDCIC: a grid-based density-confidence-interval clustering algorithm for multi-density dataset in large spatial database[C]. Proceedings of the 6th International Conference on Intelligent Systems Design and Applications. Washington DC: IEEE Computer Society, 2006: 713-717.
[22]  González R C, Woods R E. Digital Image Processing, 3rd edition[M]. Upper Saddle River, NJ: Prentice Hall, 2008.
[23]  Kennedy J, Eberhart R. Particle swarm optimization[C]. Proceedings of IEEE International Conference on Neural Networks, Perth, 1995: 1942-1948.
[24]  Holland J H. Adaptation in natural and artificial systems[M]. Ann Arbor, MI: University of Michigan Press, 1975.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133