全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

用于故障检测的集成核主分量分析

, PP. 1691-1696

Keywords: 集成学习,非监督学习,核主分量分析,故障检测

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对复杂环境下的多变量工业过程在线故障检测问题,提出基于集成核主分量分析的解决方法.该方法首先求出样本映射后的无限维空间的多组近似基,将主分量分析问题特征向量的解空间限定在近似基张成空间求解;然后集成特征向量和特征值,并计算Hotelling??2统计量和平方预报误差;最后据此判断检测结果.该方法对TennesseeEastman过程故障检测样本进行测试,并与其他两种方法进行对比.测试结果表明了所提出方法的有效性.

References

[1]  B. Scholkopf, A. Smola and K.R. Muller. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural computation, 1998, 10(5): 1299--1319.
[2]  G E. Hinton and R R. Salakhutdinov. Reducing the Dimensionality of Data with Neural Networks [J]. Science, 2006, 313: 504--507.
[3]  (GAN L Z. Kernel Learning Algorithms and Ensemble Methods[D]. Hangzhou: Zhejiang University.)
[4]  参考文献 (References)
[5]  范玉刚,李平,宋执环. 基于特征样本的KPCA在故障诊断中的应用[J], 控制与决策. 2005, 20(12): 1415--1419. (Fan Y G., Li P., Song Z H. Online sparse least square support vector machines regression[J]. Control and Decision, 2005, 20(12): 1415--1419.)
[6]  Z. Ge, C. Yang and Z. Song. Improved kernel PCA-based monitoring approach for nonlinear processes[J]. Chemical Engineering Science, 2009, 64(9): 2245--2255.
[7]  V.N. Vapnik. Statistical learning theory. New York: John Wiley and Sons, 1998.
[8]  A. d’ Aspremont, L. El Ghaoui, M I. Jordan, and G R. Lanckriet. A Direct Formulation for Sparse PCA Using Semidefinite Programming[J]. SIAM Rev., 49(3): 434-448, 2007.
[9]  L Z. Gan, H K. Liu and X F. Shen. Sparse Kernel Principal Angles for Online Process Monitoring[J]. Journal of computational Information System. 2010, 6(5): 1601-1608.
[10]  H. Xu and S. Mannor. Sparse Algorithms Are Not Stable: A No-Free-Lunch Theorem[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2012, 34(1): 187--193.
[11]  D. Opitz and R. Maclin. Popular ensemble methods: an empirical study[J]. Journal of Artificial Intelligence Research. 1999, 11: 169--198.
[12]  L.K. Hansen and P. Salamon. Neural network ensembles[J]. IEEE Trans. Pattern Analysis and Machine Intelligence. 1990, 12 (10): 993-1001.
[13]  甘良志. 核学习算法与集成方法研究[D]. 杭州:浙江大学,2010.
[14]  http://brahms.scs.uiuc.edu
[15]  J.M. Lee, C. Yoo, S.W. Choi, P.A.Vanrolleghem and I.B. Lee. Nonlinear Process Monitoring Using Kernel Principal Component Analysis[J]. Chemical Engineering Science. 2004, 59: 223-234.
[16]  J.J. Downs and E.F. Vogel. A plant-wide industrial process control problem[J]. Computers and Chemical Engineering, 1993, 17(3): 245--255.
[17]  G. Lee, C. Han and E.S. Yoon. Multiple-fault diagnosis of the Tennessee Eastman process based on system decomposition and dynamic PLS[J]. Ind. Eng. Chem. Res. , 2004, 43(25): 8037-8048.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133