全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

二阶多智能体系统量化蜂拥控制

DOI: 10.13195/j.kzyjc.2014.0008, PP. 541-545

Keywords: 多智能体,蜂拥控制,一致量化器

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对在多智能体系统的通信网络中需要对交换信息进行量化的客观情况,研究基于量化信息的二阶多智能体系统蜂拥控制问题.首先,假设多智能体系统采用一致量化器对速度和位置信息进行量化,并且有一个虚拟领导者沿着固定方向匀速运动;然后,设计基于量化信息的多智能体蜂拥控制输入,并利用非平滑系统的Lyapunov稳定性判据和不变集原理证明系统的稳定性;最后,利用Matlab对多智能体系统在二维平面上的蜂拥运动进行仿真实验,仿真结果验证了理论分析的正确性.

References

[1]  Olfati-Saber R. Flocking for multi-agent dynamic systems: Algorithms and theory[J]. IEEE Trans on Automatic Control, 2006, 51(3): 401-420.
[2]  王祥科, 李迅, 郑志强. 多智能体系统编队控制相关问题研究综述[J]. 控制与决策, 2013, 28(11): 1601-1613.
[3]  (Wang X K, Li X, Zheng Z Q. Survey of developments on multi-agent formation control related problems[J]. Control and Decision, 2013, 28(11): 1601-1613.)
[4]  娄柯, 崔宝同, 李纹. 基于蜂拥控制的移动传感器网络目标跟踪算法[J]. 控制与决策, 2013, 28(11): 1637-1642.
[5]  (Lou K, Cui B T, LiW. Target tracking algorithm of mobile sensor networks based on flocking control[J]. Control and Decision, 2013, 28(11): 1637-1642.)
[6]  Dimarogonas D V, Johansson K H. Stability analysis for multi-agent systems using the incidence martrix: Quantized communication and formation control[J]. Automatica, 2010, 46(4): 695-700.
[7]  Ceragioli F, De Persis C, Frasca P. Discontinuities and hysteresis in quantized average consensus[J]. Automatica, 2011, 47(9): 1916-1928.
[8]  Liu H, Cao M, De Persis C. Quantization effects on synchronized motion of teams of mobile agents with second-order dynamics[J]. Systems & Control Letters, 2012, 61(12): 1157-1167.
[9]  Chen W, Li X, Jiao L C. Quantized consensus of second-order continuous-time multi-agent systems with a directed topology via sampled data[J]. Automatica, 2013, 49(7): 2236-2242.
[10]  Guan Z H, Meng C, Liao R Q, et al. Consensus of second-order multi-agent dynamic systems with quantized data[J]. Physics Letters A, 2012, 376(4): 387-393.
[11]  Filippov A F. Differential equations with discontinuous righthand side[J]. American Mathematical Society Tranlations, 1964, 42(2): 199-231.
[12]  Cortes J. Discontinuous dynamical systems[J]. IEEE Control Systems Magazine, 2008, 28(3): 36-73.
[13]  Clarke F H. Optimization and nonsmooth analysis[M]. New York: Wiely, 1983: 45-46.
[14]  Shevitz D, Paden B. Lyapunov stability theory of nonsmooth systems[J]. IEEE Trans on Automatic Control, 1994, 39(9): 1910-1914.
[15]  Zhang H T, Zhai C, Chen Z Y. A general alignment repulsion algorithm for flocking of multi-agent systems[J]. IEEE Trans on Automatic Control, 2011, 56(2): 430-435.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133