Wang D, Zhang J. A graphical tuning of PI?? controllers for fractional-order systems[J]. J of Control Theory and Applications, 2011, 9(4): 599-603.
[2]
Hamamci S E. An algorithm for stabilization of fractionalorder time-delay systems using fractional-order PID controllers[J]. IEEE Trans on Automatic Control, 2007, 52(10): 1964-1969.
[3]
Astrom K J, Hagglund T. PID controllers: Theory, design, and tuning[C]. Instrument Society of America. North Carolina, 1995: 173-193.
[4]
Wang Q G, Zhang Z, Astrom K J, et al. Guaranteed dominant pole placement with PID controllers[J]. J of Process Control, 2009, 19(2): 349-352.
[5]
Mansouri R, Djennoune S, Bettayeb M. Fractional I-P pole placement controller design: Application to permanent magnet synchronous motor control[J]. Int J of Modelling, Identification and Control, 2008, 4(2): 176-185.
[6]
Saha S, Das S, Das S, et al. A conformal mapping based fractional order approach for sub-optimal tuning of PID controllers with guaranteed dominant pole placement[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(9): 3628-3642.
(Wang D J. Low-order controller design for time-delay systems: A parameter space approach[M]. Beijing: Science Press, 2013: 62-69.)
[9]
Podlubny I. Fractional differential equations[M]. San Diego: Academic Press, 1999: 243-256.
[10]
Podlubny I. Fractional-order systems and PI??D?? controllers[J]. IEEE Trans on Automatic Control, 1999, 44(1): 208-214.
[11]
Luo Y, Chen Y Q, Wang C Y, et al. Tuning fractional order proportional integral controllers for fractional order systems[J]. J of Process Control, 2010, 20(7): 823-831.