全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于空间结构统计建模的图像分类方法

DOI: 10.13195/j.kzyjc.2014.0481, PP. 1092-1098

Keywords: 连续分裂理论,统计建模,韦伯分布,偏最小二乘判决分析,复杂纹理图像分类

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出一种基于图像空间结构统计建模的复杂纹理图像模式识别方法.从理论上分析了复杂纹理图像空间结构的韦伯分布过程,通过构造多尺度全向高斯导数滤波器,获得复杂纹理图像在不同观测尺度上的全方向空间结构统计建模表征结果.基于偏最小二乘-判决分析原理构建分类器,实现了复杂纹理图像的分类识别.实验结果表明,所提出的图像空间结构统计建模方法能获得复杂纹理图像关键性的视觉感知特性,基于该方法的图像分类准确率高且性能稳定.

References

[1]  Muneesawang P, Guan L. An interactive approach for CBIR using a network of radial basis functions[J]. IEEE Trans on Multimedia, 2004, 6(5): 703-716.
[2]  Guo Z H, Zhang L, Zhang D. A completed modeling of local binary pattern operator for texture classification[J]. IEEE T Image Process, 2010, 19(6): 1657-1663.
[3]  Shrivastava N, Tyagi V. Content based image retrieval based on relative locations of multiple regions of interest using selective regions matching[J]. Information Sciences, 2014, 25: 212-224.
[4]  Liu Y, Zhang D, Lu G, et al. A survey of content-based image retrieval with high-level semantics[J]. Pattern Recognition, 2007, 40(1): 262-282.
[5]  Elalami M. A new matching strategy for content based image retrieval system[J]. Applied Soft Computing, 2014, 14: 407-418.
[6]  Liu L, Fieguth P W. Texture classification from random features[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2012, 34(3): 574-586.
[7]  刘金平, 桂卫华, 唐朝晖. 基于纹理粗细度测量的铝土矿浮选过程最佳精选泡沫状态分析[J]. 控制与决策, 2013, 28(7): 1013-1017.
[8]  (Liu J P, Gui W H,Tang Z H. Analysis of the best production condition of cleaner froth in bauxite flotation process based on froth texture coarseness measurement[J]. Control and Decision, 2013, 28(7): 1013-1017.)
[9]  刘丽, 匡纲要. 图像纹理特征提取方法综述[J]. 中国图象图形学报, 2009, 14(4): 622-635.
[10]  (Liu L, Kuang G Y. Overview of image textural feature extraction methods[J]. J of Image and Graphics, 2009, 14(4): 622-635.)
[11]  薄华, 马缚龙, 焦李成. 图像纹理的灰度共生矩阵计算问题的分析[J]. 电子学报, 2006, 34(1): 155-158.
[12]  (Bo H, Ma F L, Jiao L C. Research on computation of GLCM of image texture[J]. Acta Electronica Sinica, 2006, 34(1): 155-158.)
[13]  Guo Z, Zhang L, Zhang D. Rotation invariant texture classification using LBP variance(LBPV) with global matching[J]. Pattern Recognition, 2010, 43(3): 706-719.
[14]  刘金平, 桂卫华, 牟学民, 等. 基于Gabor 小波的浮选泡沫图像纹理特征提取[J]. 仪器仪表学报, 2010, 31(8): 1769-1775.
[15]  (Liu J P, Gui W H, Mu X M, et al. Flotation froth image texture feature extraction based on Gabor wavelets[J]. Chinese J of Scientific Instrument, 2010, 31(8): 1769-1775.)
[16]  Aujol J-F, Gilboa G, Chan T, et al. Structure-texture image decomposition-modeling, algorithms, and parameter selection[J]. Int J of Computer Vision, 2006, 67(1): 111-136.
[17]  Povlow B R, Dunn S M. Texture classification using noncasual hidden Markov models[C]. Proc of the Computer Vision And Pattern Recognition. New York, 1993: 642-643.
[18]  Li L, Yunli L, Fieguth P W, et al. BRINT: Binary rotation invariant and noise tolerant texture classification[J]. IEEE Trans on Image Processing, 2014, 23(7): 3071-3084.
[19]  Geusebroek J-M, Smeulders A W. A six-stimulus theory for stochastic texture[J]. Int J of Computer Vision, 2005, 62(1/2): 7-16.
[20]  Brown W K. A theory of sequential fragmentation and its astronomical applications[J]. J of Astrophysics and Astronomy, 1989, 10(1): 89-112.
[21]  Freeman W T, Adelson E H. The design and use of steerable filters[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1991, 13(9): 891-906.
[22]  张涛, 洪文学. 基于模糊度的计算几何分类器权重分配[J]. 控制与决策, 2013, 28(4): 569-573.
[23]  (Zhang T, HongWX.Weight calculation for computational geometry combining classifier using fuzzy of class space[J]. Control and Decision, 2013, 28(4): 569-573.)
[24]  Chevallier S, Bertrand D, Kohler A, et al. Application of PLS-DA in multivariate image analysis[J]. J of Chemometrics, 2006, 20(5): 221-229.
[25]  董学锋, 戴连奎, 黄承伟. 结合PLS-DA与SVM的近红外光谱软测量方法[J]. 浙江大学学报: 工学版, 2012, 46(5): 824-829.
[26]  (Dong X F, Dai L K, Huang C W. Near-infrared spectroscopy soft-sensing method by combining partial least squares discriminant analysis and support vector machine[J]. J of Zhejiang University: Engineering Science, 2012, 46(5): 824-829.)
[27]  Haralick R M, Shanmugam K, Dinstein I H. Textural features for image classification[J]. IEEE Trans on Systems, Man, and Cybernetics, 1973, 3(6): 610-621.
[28]  Manjunath B S, MaW-Y. Texture features for browsing and retrieval of image data[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1996, 18(8): 837-842.
[29]  Mao J, Jain A K. Texture classification and segmentation using multiresolution simultaneous autoregressive models[J]. Pattern Recognition, 1992, 25(2): 173-188.
[30]  Wang L, Liu J. Texture classification using multiresolution Markov random field models[J]. Pattern Recognition Letters, 1999, 20(2): 171-182.
[31]  Suykens J, Van Gestel T, De Brabanter J, et al. Least squares support vector machines[M]. Singapore: World Scientific, 2002: 71-116.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133