(Liu D R, Li H L, Wang D. Data-based self-learning optimal control: Research progress and prospects[J]. Acta Automatica Sinica, 2013, 39(11): 1858-1870.)
[3]
Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1): 489-501.
[4]
Qin A K, Huang V L, Suganthan P N. Differential evolution algorithm with strategy adaptation for global numerical optimization[J]. IEEE Trans on Evolutionary Computation, 2009, 13(2): 398-417.
[5]
Cao J, Lin Z, Huang G B. Self-adaptive evolutionary extreme learning machine[J]. Neural Processing Letters, 2012, 36(3): 285-305.
[6]
Zhu Q Y, Qin A K, Suganthan P N, et al. Evolutionary extreme learning machine[J]. Pattern Recognition, 2005, 38(10): 1759-1763.
[7]
Han F, Yao H F, Ling Q H. An improved evolutionary extreme learning machine based on particle swarm optimization[J]. Neurocomputing, 2013, 116: 87-93.
[8]
Miche Y, Sorjamaa A, Bas P, et al. OP-ELM: Optimally pruned extreme learning machine[J]. IEEE Trans on Neural Networks, 2010, 21(1): 158-162.
(CuiWH, Liu X B,WangW, et al. Survey on shuffled frog leaping algorithm[J]. Control and Decision, 2012, 27(4): 481-486.)
[11]
Storn R, Price K. Differential evolution ― Asimple and efficient heuristics for global optimization over continuous spaces[J]. J of Global Optimization, 1997, 11(4): 341-359.
(Xin B, Chen J. Particle swarm optimization and differiential evolution: State of the art[J]. J of Systems Science and Mathematical Sciences, 2012, 31(9): 1130-1150.)
[14]
Kennedy J, Eberhart R C. Particle swarm optimization[C]. Proc of the IEEE Int Conf on Neural Networks. Perth, 1995: 1942-1948.
[15]
Kim P, Lee J. An integrated method of particle swarm optimization and differential evolution[J]. J of Mechanical Science and Technology, 2009, 23(2): 426-434.
[16]
Hao Z F, Guo G H, Huang H. A particle swarm optimization algorithm with differential evolution[C]. Proc of the 6th Int Conf on Machine Learning and Cybernetics. Hong Kong, 2007: 1031-1035.
[17]
Xin B, Chen J, Peng Z H, et al. An adaptive hybrid optimizer based on particle swarm and differential evolution for global optimization[J]. Science China Information Sciences, 2010, 53(5): 980-989.
[18]
Zhang C S, Ning J X, Lu S, et al. A novel hybrid differential evolution and particle swarm optimization algorithm for unconstrained optimization[J]. Operations Research Letters, 2009, 37(2): 117-122.
[19]
Kannan S, Slochanal S M R, Subbaraj P, et al. Application of particle swarm optimization technique and its variants to generation expansion planning[J]. Electric Power Systems Research, 2004, 70(3): 203-210.
(Li Y X. New methods of thermal error modeling for NC machine tools and their researchment and application[D]. Shanghai: School of Mechanical & Power Engineering, Shanghai Jiaotong University, 2007.)